main repo

This commit is contained in:
Basilosaurusrex
2025-11-24 18:09:40 +01:00
parent b636ee5e70
commit f027651f9b
34146 changed files with 4436636 additions and 0 deletions

13
node_modules/d3-path/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,13 @@
Copyright 2015-2022 Mike Bostock
Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

94
node_modules/d3-path/README.md generated vendored Normal file
View File

@@ -0,0 +1,94 @@
# d3-path
Say you have some code that draws to a 2D canvas:
```js
function drawCircle(context, radius) {
context.moveTo(radius, 0);
context.arc(0, 0, radius, 0, 2 * Math.PI);
}
```
The d3-path module lets you take this exact code and additionally render to [SVG](http://www.w3.org/TR/SVG/paths.html). It works by [serializing](#path_toString) [CanvasPathMethods](http://www.w3.org/TR/2dcontext/#canvaspathmethods) calls to [SVG path data](http://www.w3.org/TR/SVG/paths.html#PathData). For example:
```js
const context = d3.path();
drawCircle(context, 40);
pathElement.setAttribute("d", context.toString());
```
Now code you write once can be used with both Canvas (for performance) and SVG (for convenience). For a practical example, see [d3-shape](https://github.com/d3/d3-shape).
## Installing
If you use npm, `npm install d3-path`. You can also download the [latest release on GitHub](https://github.com/d3/d3-path/releases/latest). In modern browsers, you can import d3-path from jsDelivr:
```html
<script type="module">
import {path} from "https://cdn.jsdelivr.net/npm/d3-path@3/+esm";
const p = path();
p.moveTo(1, 2);
p.lineTo(3, 4);
p.closePath();
</script>
```
For legacy environments, you can load d3-paths UMD bundle from an npm-based CDN such as jsDelivr; a `d3` global is exported:
```html
<script src="https://cdn.jsdelivr.net/npm/d3-path@3"></script>
<script>
const path = d3.path();
</script>
```
## API Reference
<a name="path" href="#path">#</a> d3.<b>path</b>() · [Source](https://github.com/d3/d3-path/blob/master/src/path.js), [Examples](https://observablehq.com/@d3/d3-path)
Constructs a new path serializer that implements [CanvasPathMethods](http://www.w3.org/TR/2dcontext/#canvaspathmethods).
<a name="path_moveTo" href="#path_moveTo">#</a> <i>path</i>.<b>moveTo</b>(<i>x</i>, <i>y</i>)
Move to the specified point ⟨*x*, *y*⟩. Equivalent to [*context*.moveTo](http://www.w3.org/TR/2dcontext/#dom-context-2d-moveto) and SVGs [“moveto” command](http://www.w3.org/TR/SVG/paths.html#PathDataMovetoCommands).
<a name="path_closePath" href="#path_closePath">#</a> <i>path</i>.<b>closePath</b>()
Ends the current subpath and causes an automatic straight line to be drawn from the current point to the initial point of the current subpath. Equivalent to [*context*.closePath](http://www.w3.org/TR/2dcontext/#dom-context-2d-closepath) and SVGs [“closepath” command](http://www.w3.org/TR/SVG/paths.html#PathDataClosePathCommand).
<a name="path_lineTo" href="#path_lineTo">#</a> <i>path</i>.<b>lineTo</b>(<i>x</i>, <i>y</i>)
Draws a straight line from the current point to the specified point ⟨*x*, *y*⟩. Equivalent to [*context*.lineTo](http://www.w3.org/TR/2dcontext/#dom-context-2d-lineto) and SVGs [“lineto” command](http://www.w3.org/TR/SVG/paths.html#PathDataLinetoCommands).
<a name="path_quadraticCurveTo" href="#path_quadraticCurveTo">#</a> <i>path</i>.<b>quadraticCurveTo</b>(<i>cpx</i>, <i>cpy</i>, <i>x</i>, <i>y</i>)
Draws a quadratic Bézier segment from the current point to the specified point ⟨*x*, *y*⟩, with the specified control point ⟨*cpx*, *cpy*⟩. Equivalent to [*context*.quadraticCurveTo](http://www.w3.org/TR/2dcontext/#dom-context-2d-quadraticcurveto) and SVGs [quadratic Bézier curve commands](http://www.w3.org/TR/SVG/paths.html#PathDataQuadraticBezierCommands).
<a name="path_bezierCurveTo" href="#path_bezierCurveTo">#</a> <i>path</i>.<b>bezierCurveTo</b>(<i>cpx1</i>, <i>cpy1</i>, <i>cpx2</i>, <i>cpy2</i>, <i>x</i>, <i>y</i>)
Draws a cubic Bézier segment from the current point to the specified point ⟨*x*, *y*⟩, with the specified control points ⟨*cpx1*, *cpy1*⟩ and ⟨*cpx2*, *cpy2*⟩. Equivalent to [*context*.bezierCurveTo](http://www.w3.org/TR/2dcontext/#dom-context-2d-beziercurveto) and SVGs [cubic Bézier curve commands](http://www.w3.org/TR/SVG/paths.html#PathDataCubicBezierCommands).
<a name="path_arcTo" href="#path_arcTo">#</a> <i>path</i>.<b>arcTo</b>(<i>x1</i>, <i>y1</i>, <i>x2</i>, <i>y2</i>, <i>radius</i>)
Draws a circular arc segment with the specified *radius* that starts tangent to the line between the current point and the specified point ⟨*x1*, *y1*⟩ and ends tangent to the line between the specified points ⟨*x1*, *y1*⟩ and ⟨*x2*, *y2*⟩. If the first tangent point is not equal to the current point, a straight line is drawn between the current point and the first tangent point. Equivalent to [*context*.arcTo](http://www.w3.org/TR/2dcontext/#dom-context-2d-arcto) and uses SVGs [elliptical arc curve commands](http://www.w3.org/TR/SVG/paths.html#PathDataEllipticalArcCommands).
<a name="path_arc" href="#path_arc">#</a> <i>path</i>.<b>arc</b>(<i>x</i>, <i>y</i>, <i>radius</i>, <i>startAngle</i>, <i>endAngle</i>[, <i>anticlockwise</i>])
Draws a circular arc segment with the specified center ⟨*x*, *y*⟩, *radius*, *startAngle* and *endAngle*. If *anticlockwise* is true, the arc is drawn in the anticlockwise direction; otherwise, it is drawn in the clockwise direction. If the current point is not equal to the starting point of the arc, a straight line is drawn from the current point to the start of the arc. Equivalent to [*context*.arc](http://www.w3.org/TR/2dcontext/#dom-context-2d-arc) and uses SVGs [elliptical arc curve commands](http://www.w3.org/TR/SVG/paths.html#PathDataEllipticalArcCommands).
<a name="path_rect" href="#path_rect">#</a> <i>path</i>.<b>rect</b>(<i>x</i>, <i>y</i>, <i>w</i>, <i>h</i>)
Creates a new subpath containing just the four points ⟨*x*, *y*⟩, ⟨*x* + *w*, *y*⟩, ⟨*x* + *w*, *y* + *h*⟩, ⟨*x*, *y* + *h*⟩, with those four points connected by straight lines, and then marks the subpath as closed. Equivalent to [*context*.rect](http://www.w3.org/TR/2dcontext/#dom-context-2d-rect) and uses SVGs [“lineto” commands](http://www.w3.org/TR/SVG/paths.html#PathDataLinetoCommands).
<a name="path_toString" href="#path_toString">#</a> <i>path</i>.<b>toString</b>()
Returns the string representation of this *path* according to SVGs [path data specification](http://www.w3.org/TR/SVG/paths.html#PathData).
<a name="pathRound" href="#pathRound">#</a> d3.<b>pathRound</b>(*digits* = 3) · [Source](https://github.com/d3/d3-path/blob/master/src/path.js), [Examples](https://observablehq.com/@d3/d3-path)
Like [d3.path](#path), except limits the digits after the decimal to the specified number of *digits*.

169
node_modules/d3-path/dist/d3-path.js generated vendored Normal file
View File

@@ -0,0 +1,169 @@
// https://d3js.org/d3-path/ v3.1.0 Copyright 2015-2022 Mike Bostock
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
typeof define === 'function' && define.amd ? define(['exports'], factory) :
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}));
})(this, (function (exports) { 'use strict';
const pi = Math.PI,
tau = 2 * pi,
epsilon = 1e-6,
tauEpsilon = tau - epsilon;
function append(strings) {
this._ += strings[0];
for (let i = 1, n = strings.length; i < n; ++i) {
this._ += arguments[i] + strings[i];
}
}
function appendRound(digits) {
let d = Math.floor(digits);
if (!(d >= 0)) throw new Error(`invalid digits: ${digits}`);
if (d > 15) return append;
const k = 10 ** d;
return function(strings) {
this._ += strings[0];
for (let i = 1, n = strings.length; i < n; ++i) {
this._ += Math.round(arguments[i] * k) / k + strings[i];
}
};
}
class Path {
constructor(digits) {
this._x0 = this._y0 = // start of current subpath
this._x1 = this._y1 = null; // end of current subpath
this._ = "";
this._append = digits == null ? append : appendRound(digits);
}
moveTo(x, y) {
this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`;
}
closePath() {
if (this._x1 !== null) {
this._x1 = this._x0, this._y1 = this._y0;
this._append`Z`;
}
}
lineTo(x, y) {
this._append`L${this._x1 = +x},${this._y1 = +y}`;
}
quadraticCurveTo(x1, y1, x, y) {
this._append`Q${+x1},${+y1},${this._x1 = +x},${this._y1 = +y}`;
}
bezierCurveTo(x1, y1, x2, y2, x, y) {
this._append`C${+x1},${+y1},${+x2},${+y2},${this._x1 = +x},${this._y1 = +y}`;
}
arcTo(x1, y1, x2, y2, r) {
x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r;
// Is the radius negative? Error.
if (r < 0) throw new Error(`negative radius: ${r}`);
let x0 = this._x1,
y0 = this._y1,
x21 = x2 - x1,
y21 = y2 - y1,
x01 = x0 - x1,
y01 = y0 - y1,
l01_2 = x01 * x01 + y01 * y01;
// Is this path empty? Move to (x1,y1).
if (this._x1 === null) {
this._append`M${this._x1 = x1},${this._y1 = y1}`;
}
// Or, is (x1,y1) coincident with (x0,y0)? Do nothing.
else if (!(l01_2 > epsilon));
// Or, are (x0,y0), (x1,y1) and (x2,y2) collinear?
// Equivalently, is (x1,y1) coincident with (x2,y2)?
// Or, is the radius zero? Line to (x1,y1).
else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon) || !r) {
this._append`L${this._x1 = x1},${this._y1 = y1}`;
}
// Otherwise, draw an arc!
else {
let x20 = x2 - x0,
y20 = y2 - y0,
l21_2 = x21 * x21 + y21 * y21,
l20_2 = x20 * x20 + y20 * y20,
l21 = Math.sqrt(l21_2),
l01 = Math.sqrt(l01_2),
l = r * Math.tan((pi - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2),
t01 = l / l01,
t21 = l / l21;
// If the start tangent is not coincident with (x0,y0), line to.
if (Math.abs(t01 - 1) > epsilon) {
this._append`L${x1 + t01 * x01},${y1 + t01 * y01}`;
}
this._append`A${r},${r},0,0,${+(y01 * x20 > x01 * y20)},${this._x1 = x1 + t21 * x21},${this._y1 = y1 + t21 * y21}`;
}
}
arc(x, y, r, a0, a1, ccw) {
x = +x, y = +y, r = +r, ccw = !!ccw;
// Is the radius negative? Error.
if (r < 0) throw new Error(`negative radius: ${r}`);
let dx = r * Math.cos(a0),
dy = r * Math.sin(a0),
x0 = x + dx,
y0 = y + dy,
cw = 1 ^ ccw,
da = ccw ? a0 - a1 : a1 - a0;
// Is this path empty? Move to (x0,y0).
if (this._x1 === null) {
this._append`M${x0},${y0}`;
}
// Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0).
else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) {
this._append`L${x0},${y0}`;
}
// Is this arc empty? Were done.
if (!r) return;
// Does the angle go the wrong way? Flip the direction.
if (da < 0) da = da % tau + tau;
// Is this a complete circle? Draw two arcs to complete the circle.
if (da > tauEpsilon) {
this._append`A${r},${r},0,1,${cw},${x - dx},${y - dy}A${r},${r},0,1,${cw},${this._x1 = x0},${this._y1 = y0}`;
}
// Is this arc non-empty? Draw an arc!
else if (da > epsilon) {
this._append`A${r},${r},0,${+(da >= pi)},${cw},${this._x1 = x + r * Math.cos(a1)},${this._y1 = y + r * Math.sin(a1)}`;
}
}
rect(x, y, w, h) {
this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${w = +w}v${+h}h${-w}Z`;
}
toString() {
return this._;
}
}
function path() {
return new Path;
}
// Allow instanceof d3.path
path.prototype = Path.prototype;
function pathRound(digits = 3) {
return new Path(+digits);
}
exports.Path = Path;
exports.path = path;
exports.pathRound = pathRound;
}));

2
node_modules/d3-path/dist/d3-path.min.js generated vendored Normal file
View File

@@ -0,0 +1,2 @@
// https://d3js.org/d3-path/ v3.1.0 Copyright 2015-2022 Mike Bostock
!function(t,i){"object"==typeof exports&&"undefined"!=typeof module?i(exports):"function"==typeof define&&define.amd?define(["exports"],i):i((t="undefined"!=typeof globalThis?globalThis:t||self).d3=t.d3||{})}(this,(function(t){"use strict";const i=Math.PI,s=2*i,h=1e-6,e=s-h;function n(t){this._+=t[0];for(let i=1,s=t.length;i<s;++i)this._+=arguments[i]+t[i]}class _{constructor(t){this._x0=this._y0=this._x1=this._y1=null,this._="",this._append=null==t?n:function(t){let i=Math.floor(t);if(!(i>=0))throw new Error(`invalid digits: ${t}`);if(i>15)return n;const s=10**i;return function(t){this._+=t[0];for(let i=1,h=t.length;i<h;++i)this._+=Math.round(arguments[i]*s)/s+t[i]}}(t)}moveTo(t,i){this._append`M${this._x0=this._x1=+t},${this._y0=this._y1=+i}`}closePath(){null!==this._x1&&(this._x1=this._x0,this._y1=this._y0,this._append`Z`)}lineTo(t,i){this._append`L${this._x1=+t},${this._y1=+i}`}quadraticCurveTo(t,i,s,h){this._append`Q${+t},${+i},${this._x1=+s},${this._y1=+h}`}bezierCurveTo(t,i,s,h,e,n){this._append`C${+t},${+i},${+s},${+h},${this._x1=+e},${this._y1=+n}`}arcTo(t,s,e,n,_){if(t=+t,s=+s,e=+e,n=+n,(_=+_)<0)throw new Error(`negative radius: ${_}`);let a=this._x1,$=this._y1,o=e-t,r=n-s,p=a-t,d=$-s,l=p*p+d*d;if(null===this._x1)this._append`M${this._x1=t},${this._y1=s}`;else if(l>h)if(Math.abs(d*o-r*p)>h&&_){let u=e-a,f=n-$,x=o*o+r*r,y=u*u+f*f,c=Math.sqrt(x),M=Math.sqrt(l),b=_*Math.tan((i-Math.acos((x+l-y)/(2*c*M)))/2),g=b/M,w=b/c;Math.abs(g-1)>h&&this._append`L${t+g*p},${s+g*d}`,this._append`A${_},${_},0,0,${+(d*u>p*f)},${this._x1=t+w*o},${this._y1=s+w*r}`}else this._append`L${this._x1=t},${this._y1=s}`;else;}arc(t,n,_,a,$,o){if(t=+t,n=+n,o=!!o,(_=+_)<0)throw new Error(`negative radius: ${_}`);let r=_*Math.cos(a),p=_*Math.sin(a),d=t+r,l=n+p,u=1^o,f=o?a-$:$-a;null===this._x1?this._append`M${d},${l}`:(Math.abs(this._x1-d)>h||Math.abs(this._y1-l)>h)&&this._append`L${d},${l}`,_&&(f<0&&(f=f%s+s),f>e?this._append`A${_},${_},0,1,${u},${t-r},${n-p}A${_},${_},0,1,${u},${this._x1=d},${this._y1=l}`:f>h&&this._append`A${_},${_},0,${+(f>=i)},${u},${this._x1=t+_*Math.cos($)},${this._y1=n+_*Math.sin($)}`)}rect(t,i,s,h){this._append`M${this._x0=this._x1=+t},${this._y0=this._y1=+i}h${s=+s}v${+h}h${-s}Z`}toString(){return this._}}function a(){return new _}a.prototype=_.prototype,t.Path=_,t.path=a,t.pathRound=function(t=3){return new _(+t)}}));

54
node_modules/d3-path/package.json generated vendored Normal file
View File

@@ -0,0 +1,54 @@
{
"name": "d3-path",
"version": "3.1.0",
"description": "Serialize Canvas path commands to SVG.",
"homepage": "https://d3js.org/d3-path/",
"repository": {
"type": "git",
"url": "https://github.com/d3/d3-path.git"
},
"keywords": [
"d3",
"d3-module",
"canvas",
"path",
"svg",
"graphics",
"CanvasRenderingContext2D",
"CanvasPathMethods",
"Path2D"
],
"license": "ISC",
"author": {
"name": "Mike Bostock",
"url": "http://bost.ocks.org/mike"
},
"type": "module",
"files": [
"dist/**/*.js",
"src/**/*.js"
],
"module": "src/index.js",
"main": "src/index.js",
"jsdelivr": "dist/d3-path.min.js",
"unpkg": "dist/d3-path.min.js",
"exports": {
"umd": "./dist/d3-path.min.js",
"default": "./src/index.js"
},
"sideEffects": false,
"devDependencies": {
"eslint": "8",
"mocha": "10",
"rollup": "3",
"rollup-plugin-terser": "7"
},
"scripts": {
"test": "mocha 'test/**/*-test.js' && eslint src test",
"prepublishOnly": "rm -rf dist && yarn test && rollup -c",
"postpublish": "git push && git push --tags && cd ../d3.github.com && git pull && cp ../${npm_package_name}/dist/${npm_package_name}.js ${npm_package_name}.v${npm_package_version%%.*}.js && cp ../${npm_package_name}/dist/${npm_package_name}.min.js ${npm_package_name}.v${npm_package_version%%.*}.min.js && git add ${npm_package_name}.v${npm_package_version%%.*}.js ${npm_package_name}.v${npm_package_version%%.*}.min.js && git commit -m \"${npm_package_name} ${npm_package_version}\" && git push && cd -"
},
"engines": {
"node": ">=12"
}
}

1
node_modules/d3-path/src/index.js generated vendored Normal file
View File

@@ -0,0 +1 @@
export {Path, path, pathRound} from "./path.js";

156
node_modules/d3-path/src/path.js generated vendored Normal file
View File

@@ -0,0 +1,156 @@
const pi = Math.PI,
tau = 2 * pi,
epsilon = 1e-6,
tauEpsilon = tau - epsilon;
function append(strings) {
this._ += strings[0];
for (let i = 1, n = strings.length; i < n; ++i) {
this._ += arguments[i] + strings[i];
}
}
function appendRound(digits) {
let d = Math.floor(digits);
if (!(d >= 0)) throw new Error(`invalid digits: ${digits}`);
if (d > 15) return append;
const k = 10 ** d;
return function(strings) {
this._ += strings[0];
for (let i = 1, n = strings.length; i < n; ++i) {
this._ += Math.round(arguments[i] * k) / k + strings[i];
}
};
}
export class Path {
constructor(digits) {
this._x0 = this._y0 = // start of current subpath
this._x1 = this._y1 = null; // end of current subpath
this._ = "";
this._append = digits == null ? append : appendRound(digits);
}
moveTo(x, y) {
this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`;
}
closePath() {
if (this._x1 !== null) {
this._x1 = this._x0, this._y1 = this._y0;
this._append`Z`;
}
}
lineTo(x, y) {
this._append`L${this._x1 = +x},${this._y1 = +y}`;
}
quadraticCurveTo(x1, y1, x, y) {
this._append`Q${+x1},${+y1},${this._x1 = +x},${this._y1 = +y}`;
}
bezierCurveTo(x1, y1, x2, y2, x, y) {
this._append`C${+x1},${+y1},${+x2},${+y2},${this._x1 = +x},${this._y1 = +y}`;
}
arcTo(x1, y1, x2, y2, r) {
x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r;
// Is the radius negative? Error.
if (r < 0) throw new Error(`negative radius: ${r}`);
let x0 = this._x1,
y0 = this._y1,
x21 = x2 - x1,
y21 = y2 - y1,
x01 = x0 - x1,
y01 = y0 - y1,
l01_2 = x01 * x01 + y01 * y01;
// Is this path empty? Move to (x1,y1).
if (this._x1 === null) {
this._append`M${this._x1 = x1},${this._y1 = y1}`;
}
// Or, is (x1,y1) coincident with (x0,y0)? Do nothing.
else if (!(l01_2 > epsilon));
// Or, are (x0,y0), (x1,y1) and (x2,y2) collinear?
// Equivalently, is (x1,y1) coincident with (x2,y2)?
// Or, is the radius zero? Line to (x1,y1).
else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon) || !r) {
this._append`L${this._x1 = x1},${this._y1 = y1}`;
}
// Otherwise, draw an arc!
else {
let x20 = x2 - x0,
y20 = y2 - y0,
l21_2 = x21 * x21 + y21 * y21,
l20_2 = x20 * x20 + y20 * y20,
l21 = Math.sqrt(l21_2),
l01 = Math.sqrt(l01_2),
l = r * Math.tan((pi - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2),
t01 = l / l01,
t21 = l / l21;
// If the start tangent is not coincident with (x0,y0), line to.
if (Math.abs(t01 - 1) > epsilon) {
this._append`L${x1 + t01 * x01},${y1 + t01 * y01}`;
}
this._append`A${r},${r},0,0,${+(y01 * x20 > x01 * y20)},${this._x1 = x1 + t21 * x21},${this._y1 = y1 + t21 * y21}`;
}
}
arc(x, y, r, a0, a1, ccw) {
x = +x, y = +y, r = +r, ccw = !!ccw;
// Is the radius negative? Error.
if (r < 0) throw new Error(`negative radius: ${r}`);
let dx = r * Math.cos(a0),
dy = r * Math.sin(a0),
x0 = x + dx,
y0 = y + dy,
cw = 1 ^ ccw,
da = ccw ? a0 - a1 : a1 - a0;
// Is this path empty? Move to (x0,y0).
if (this._x1 === null) {
this._append`M${x0},${y0}`;
}
// Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0).
else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) {
this._append`L${x0},${y0}`;
}
// Is this arc empty? Were done.
if (!r) return;
// Does the angle go the wrong way? Flip the direction.
if (da < 0) da = da % tau + tau;
// Is this a complete circle? Draw two arcs to complete the circle.
if (da > tauEpsilon) {
this._append`A${r},${r},0,1,${cw},${x - dx},${y - dy}A${r},${r},0,1,${cw},${this._x1 = x0},${this._y1 = y0}`;
}
// Is this arc non-empty? Draw an arc!
else if (da > epsilon) {
this._append`A${r},${r},0,${+(da >= pi)},${cw},${this._x1 = x + r * Math.cos(a1)},${this._y1 = y + r * Math.sin(a1)}`;
}
}
rect(x, y, w, h) {
this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${w = +w}v${+h}h${-w}Z`;
}
toString() {
return this._;
}
}
export function path() {
return new Path;
}
// Allow instanceof d3.path
path.prototype = Path.prototype;
export function pathRound(digits = 3) {
return new Path(+digits);
}