main repo

This commit is contained in:
Basilosaurusrex
2025-11-24 18:09:40 +01:00
parent b636ee5e70
commit f027651f9b
34146 changed files with 4436636 additions and 0 deletions

View File

@@ -0,0 +1,92 @@
import {
BufferGeometry,
Float32BufferAttribute
} from 'three';
/**
* A special type of box geometry intended for {@link LineSegments}.
*
* ```js
* const geometry = new THREE.BoxLineGeometry();
* const material = new THREE.LineBasicMaterial( { color: 0x00ff00 } );
* const lines = new THREE.LineSegments( geometry, material );
* scene.add( lines );
* ```
*
* @augments BufferGeometry
* @three_import import { BoxLineGeometry } from 'three/addons/geometries/BoxLineGeometry.js';
*/
class BoxLineGeometry extends BufferGeometry {
/**
* Constructs a new box line geometry.
*
* @param {number} [width=1] - The width. That is, the length of the edges parallel to the X axis.
* @param {number} [height=1] - The height. That is, the length of the edges parallel to the Y axis.
* @param {number} [depth=1] - The depth. That is, the length of the edges parallel to the Z axis.
* @param {number} [widthSegments=1] - Number of segmented rectangular sections along the width of the sides.
* @param {number} [heightSegments=1] - Number of segmented rectangular sections along the height of the sides.
* @param {number} [depthSegments=1] - Number of segmented rectangular sections along the depth of the sides.
*/
constructor( width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1 ) {
super();
widthSegments = Math.floor( widthSegments );
heightSegments = Math.floor( heightSegments );
depthSegments = Math.floor( depthSegments );
const widthHalf = width / 2;
const heightHalf = height / 2;
const depthHalf = depth / 2;
const segmentWidth = width / widthSegments;
const segmentHeight = height / heightSegments;
const segmentDepth = depth / depthSegments;
const vertices = [];
let x = - widthHalf;
let y = - heightHalf;
let z = - depthHalf;
for ( let i = 0; i <= widthSegments; i ++ ) {
vertices.push( x, - heightHalf, - depthHalf, x, heightHalf, - depthHalf );
vertices.push( x, heightHalf, - depthHalf, x, heightHalf, depthHalf );
vertices.push( x, heightHalf, depthHalf, x, - heightHalf, depthHalf );
vertices.push( x, - heightHalf, depthHalf, x, - heightHalf, - depthHalf );
x += segmentWidth;
}
for ( let i = 0; i <= heightSegments; i ++ ) {
vertices.push( - widthHalf, y, - depthHalf, widthHalf, y, - depthHalf );
vertices.push( widthHalf, y, - depthHalf, widthHalf, y, depthHalf );
vertices.push( widthHalf, y, depthHalf, - widthHalf, y, depthHalf );
vertices.push( - widthHalf, y, depthHalf, - widthHalf, y, - depthHalf );
y += segmentHeight;
}
for ( let i = 0; i <= depthSegments; i ++ ) {
vertices.push( - widthHalf, - heightHalf, z, - widthHalf, heightHalf, z );
vertices.push( - widthHalf, heightHalf, z, widthHalf, heightHalf, z );
vertices.push( widthHalf, heightHalf, z, widthHalf, - heightHalf, z );
vertices.push( widthHalf, - heightHalf, z, - widthHalf, - heightHalf, z );
z += segmentDepth;
}
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
}
}
export { BoxLineGeometry };

View File

@@ -0,0 +1,72 @@
import {
BufferGeometry,
Float32BufferAttribute
} from 'three';
import { ConvexHull } from '../math/ConvexHull.js';
/**
* This class can be used to generate a convex hull for a given array of 3D points.
* The average time complexity for this task is considered to be O(nlog(n)).
*
* ```js
* const geometry = new ConvexGeometry( points );
* const material = new THREE.MeshBasicMaterial( { color: 0x00ff00 } );
* const mesh = new THREE.Mesh( geometry, material );
* scene.add( mesh );
* ```
*
* @augments BufferGeometry
* @three_import import { ConvexGeometry } from 'three/addons/geometries/ConvexGeometry.js';
*/
class ConvexGeometry extends BufferGeometry {
/**
* Constructs a new convex geometry.
*
* @param {Array<Vector3>} points - An array of points in 3D space which should be enclosed by the convex hull.
*/
constructor( points = [] ) {
super();
// buffers
const vertices = [];
const normals = [];
const convexHull = new ConvexHull().setFromPoints( points );
// generate vertices and normals
const faces = convexHull.faces;
for ( let i = 0; i < faces.length; i ++ ) {
const face = faces[ i ];
let edge = face.edge;
// we move along a doubly-connected edge list to access all face points (see HalfEdge docs)
do {
const point = edge.head().point;
vertices.push( point.x, point.y, point.z );
normals.push( face.normal.x, face.normal.y, face.normal.z );
edge = edge.next;
} while ( edge !== face.edge );
}
// build geometry
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
}
}
export { ConvexGeometry };

View File

@@ -0,0 +1,420 @@
import {
BufferGeometry,
Euler,
Float32BufferAttribute,
Matrix3,
Matrix4,
Mesh,
Vector3
} from 'three';
/**
* This class can be used to create a decal mesh that serves different kinds of purposes e.g.
* adding unique details to models, performing dynamic visual environmental changes or covering seams.
*
* Please not that decal projections can be distorted when used around corners. More information at
* this GitHub issue: [Decal projections without distortions]{@link https://github.com/mrdoob/three.js/issues/21187}.
*
* Reference: [How to project decals]{@link http://blog.wolfire.com/2009/06/how-to-project-decals/}
*
* ```js
* const geometry = new DecalGeometry( mesh, position, orientation, size );
* const material = new THREE.MeshBasicMaterial( { color: 0x00ff00 } );
* const mesh = new THREE.Mesh( geometry, material );
* scene.add( mesh );
* ```
*
* @augments BufferGeometry
* @three_import import { DecalGeometry } from 'three/addons/geometries/DecalGeometry.js';
*/
class DecalGeometry extends BufferGeometry {
/**
* Constructs a new decal geometry.
*
* @param {Mesh} [mesh] - The base mesh the decal should be projected on.
* @param {Vector3} [position] - The position of the decal projector.
* @param {Euler} [orientation] - The orientation of the decal projector.
* @param {Vector3} [size] - Tje scale of the decal projector.
*/
constructor( mesh = new Mesh(), position = new Vector3(), orientation = new Euler(), size = new Vector3( 1, 1, 1 ) ) {
super();
// buffers
const vertices = [];
const normals = [];
const uvs = [];
// helpers
const plane = new Vector3();
const normalMatrix = new Matrix3().getNormalMatrix( mesh.matrixWorld );
// this matrix represents the transformation of the decal projector
const projectorMatrix = new Matrix4();
projectorMatrix.makeRotationFromEuler( orientation );
projectorMatrix.setPosition( position );
const projectorMatrixInverse = new Matrix4();
projectorMatrixInverse.copy( projectorMatrix ).invert();
// generate buffers
generate();
// build geometry
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
if ( normals.length > 0 ) {
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
}
//
function generate() {
let decalVertices = [];
const vertex = new Vector3();
const normal = new Vector3();
// handle different geometry types
const geometry = mesh.geometry;
const positionAttribute = geometry.attributes.position;
const normalAttribute = geometry.attributes.normal;
// first, create an array of 'DecalVertex' objects
// three consecutive 'DecalVertex' objects represent a single face
//
// this data structure will be later used to perform the clipping
if ( geometry.index !== null ) {
// indexed BufferGeometry
const index = geometry.index;
for ( let i = 0; i < index.count; i ++ ) {
vertex.fromBufferAttribute( positionAttribute, index.getX( i ) );
if ( normalAttribute ) {
normal.fromBufferAttribute( normalAttribute, index.getX( i ) );
pushDecalVertex( decalVertices, vertex, normal );
} else {
pushDecalVertex( decalVertices, vertex );
}
}
} else {
if ( positionAttribute === undefined ) return; // empty geometry
// non-indexed BufferGeometry
for ( let i = 0; i < positionAttribute.count; i ++ ) {
vertex.fromBufferAttribute( positionAttribute, i );
if ( normalAttribute ) {
normal.fromBufferAttribute( normalAttribute, i );
pushDecalVertex( decalVertices, vertex, normal );
} else {
pushDecalVertex( decalVertices, vertex );
}
}
}
// second, clip the geometry so that it doesn't extend out from the projector
decalVertices = clipGeometry( decalVertices, plane.set( 1, 0, 0 ) );
decalVertices = clipGeometry( decalVertices, plane.set( - 1, 0, 0 ) );
decalVertices = clipGeometry( decalVertices, plane.set( 0, 1, 0 ) );
decalVertices = clipGeometry( decalVertices, plane.set( 0, - 1, 0 ) );
decalVertices = clipGeometry( decalVertices, plane.set( 0, 0, 1 ) );
decalVertices = clipGeometry( decalVertices, plane.set( 0, 0, - 1 ) );
// third, generate final vertices, normals and uvs
for ( let i = 0; i < decalVertices.length; i ++ ) {
const decalVertex = decalVertices[ i ];
// create texture coordinates (we are still in projector space)
uvs.push(
0.5 + ( decalVertex.position.x / size.x ),
0.5 + ( decalVertex.position.y / size.y )
);
// transform the vertex back to world space
decalVertex.position.applyMatrix4( projectorMatrix );
// now create vertex and normal buffer data
vertices.push( decalVertex.position.x, decalVertex.position.y, decalVertex.position.z );
if ( decalVertex.normal !== null ) {
normals.push( decalVertex.normal.x, decalVertex.normal.y, decalVertex.normal.z );
}
}
}
function pushDecalVertex( decalVertices, vertex, normal = null ) {
// transform the vertex to world space, then to projector space
vertex.applyMatrix4( mesh.matrixWorld );
vertex.applyMatrix4( projectorMatrixInverse );
if ( normal ) {
normal.applyNormalMatrix( normalMatrix );
decalVertices.push( new DecalVertex( vertex.clone(), normal.clone() ) );
} else {
decalVertices.push( new DecalVertex( vertex.clone() ) );
}
}
function clipGeometry( inVertices, plane ) {
const outVertices = [];
const s = 0.5 * Math.abs( size.dot( plane ) );
// a single iteration clips one face,
// which consists of three consecutive 'DecalVertex' objects
for ( let i = 0; i < inVertices.length; i += 3 ) {
let total = 0;
let nV1;
let nV2;
let nV3;
let nV4;
const d1 = inVertices[ i + 0 ].position.dot( plane ) - s;
const d2 = inVertices[ i + 1 ].position.dot( plane ) - s;
const d3 = inVertices[ i + 2 ].position.dot( plane ) - s;
const v1Out = d1 > 0;
const v2Out = d2 > 0;
const v3Out = d3 > 0;
// calculate, how many vertices of the face lie outside of the clipping plane
total = ( v1Out ? 1 : 0 ) + ( v2Out ? 1 : 0 ) + ( v3Out ? 1 : 0 );
switch ( total ) {
case 0: {
// the entire face lies inside of the plane, no clipping needed
outVertices.push( inVertices[ i ] );
outVertices.push( inVertices[ i + 1 ] );
outVertices.push( inVertices[ i + 2 ] );
break;
}
case 1: {
// one vertex lies outside of the plane, perform clipping
if ( v1Out ) {
nV1 = inVertices[ i + 1 ];
nV2 = inVertices[ i + 2 ];
nV3 = clip( inVertices[ i ], nV1, plane, s );
nV4 = clip( inVertices[ i ], nV2, plane, s );
}
if ( v2Out ) {
nV1 = inVertices[ i ];
nV2 = inVertices[ i + 2 ];
nV3 = clip( inVertices[ i + 1 ], nV1, plane, s );
nV4 = clip( inVertices[ i + 1 ], nV2, plane, s );
outVertices.push( nV3 );
outVertices.push( nV2.clone() );
outVertices.push( nV1.clone() );
outVertices.push( nV2.clone() );
outVertices.push( nV3.clone() );
outVertices.push( nV4 );
break;
}
if ( v3Out ) {
nV1 = inVertices[ i ];
nV2 = inVertices[ i + 1 ];
nV3 = clip( inVertices[ i + 2 ], nV1, plane, s );
nV4 = clip( inVertices[ i + 2 ], nV2, plane, s );
}
outVertices.push( nV1.clone() );
outVertices.push( nV2.clone() );
outVertices.push( nV3 );
outVertices.push( nV4 );
outVertices.push( nV3.clone() );
outVertices.push( nV2.clone() );
break;
}
case 2: {
// two vertices lies outside of the plane, perform clipping
if ( ! v1Out ) {
nV1 = inVertices[ i ].clone();
nV2 = clip( nV1, inVertices[ i + 1 ], plane, s );
nV3 = clip( nV1, inVertices[ i + 2 ], plane, s );
outVertices.push( nV1 );
outVertices.push( nV2 );
outVertices.push( nV3 );
}
if ( ! v2Out ) {
nV1 = inVertices[ i + 1 ].clone();
nV2 = clip( nV1, inVertices[ i + 2 ], plane, s );
nV3 = clip( nV1, inVertices[ i ], plane, s );
outVertices.push( nV1 );
outVertices.push( nV2 );
outVertices.push( nV3 );
}
if ( ! v3Out ) {
nV1 = inVertices[ i + 2 ].clone();
nV2 = clip( nV1, inVertices[ i ], plane, s );
nV3 = clip( nV1, inVertices[ i + 1 ], plane, s );
outVertices.push( nV1 );
outVertices.push( nV2 );
outVertices.push( nV3 );
}
break;
}
case 3: {
// the entire face lies outside of the plane, so let's discard the corresponding vertices
break;
}
}
}
return outVertices;
}
function clip( v0, v1, p, s ) {
const d0 = v0.position.dot( p ) - s;
const d1 = v1.position.dot( p ) - s;
const s0 = d0 / ( d0 - d1 );
const position = new Vector3(
v0.position.x + s0 * ( v1.position.x - v0.position.x ),
v0.position.y + s0 * ( v1.position.y - v0.position.y ),
v0.position.z + s0 * ( v1.position.z - v0.position.z )
);
let normal = null;
if ( v0.normal !== null && v1.normal !== null ) {
normal = new Vector3(
v0.normal.x + s0 * ( v1.normal.x - v0.normal.x ),
v0.normal.y + s0 * ( v1.normal.y - v0.normal.y ),
v0.normal.z + s0 * ( v1.normal.z - v0.normal.z )
);
}
const v = new DecalVertex( position, normal );
// need to clip more values (texture coordinates)? do it this way:
// intersectpoint.value = a.value + s * ( b.value - a.value );
return v;
}
}
}
// helper
class DecalVertex {
constructor( position, normal = null ) {
this.position = position;
this.normal = normal;
}
clone() {
const position = this.position.clone();
const normal = ( this.normal !== null ) ? this.normal.clone() : null;
return new this.constructor( position, normal );
}
}
export { DecalGeometry, DecalVertex };

View File

@@ -0,0 +1,100 @@
/**
* @module ParametricFunctions
* @three_import import * as ParametricFunctions from 'three/addons/geometries/ParametricFunctions.js';
*/
/**
* A parametric function representing the Klein bottle.
*
* @param {number} v - The `v` coordinate on the surface in the range `[0,1]`.
* @param {number} u - The `u` coordinate on the surface in the range `[0,1]`.
* @param {Vector3} target - The target vector that is used to store the method's result.
*/
function klein( v, u, target ) {
u *= Math.PI;
v *= 2 * Math.PI;
u = u * 2;
let x, z;
if ( u < Math.PI ) {
x = 3 * Math.cos( u ) * ( 1 + Math.sin( u ) ) + ( 2 * ( 1 - Math.cos( u ) / 2 ) ) * Math.cos( u ) * Math.cos( v );
z = - 8 * Math.sin( u ) - 2 * ( 1 - Math.cos( u ) / 2 ) * Math.sin( u ) * Math.cos( v );
} else {
x = 3 * Math.cos( u ) * ( 1 + Math.sin( u ) ) + ( 2 * ( 1 - Math.cos( u ) / 2 ) ) * Math.cos( v + Math.PI );
z = - 8 * Math.sin( u );
}
const y = - 2 * ( 1 - Math.cos( u ) / 2 ) * Math.sin( v );
target.set( x, y, z );
}
/**
* A parametric function representing a flat plane.
*
* @param {number} u - The `u` coordinate on the surface in the range `[0,1]`.
* @param {number} v - The `v` coordinate on the surface in the range `[0,1]`.
* @param {Vector3} target - The target vector that is used to store the method's result.
*/
function plane( u, v, target ) {
target.set( u, 0, v );
}
/**
* A parametric function representing a flat mobius strip.
*
* @param {number} u - The `u` coordinate on the surface in the range `[0,1]`.
* @param {number} t - The `v` coordinate on the surface in the range `[0,1]`.
* @param {Vector3} target - The target vector that is used to store the method's result.
*/
function mobius( u, t, target ) {
// http://www.wolframalpha.com/input/?i=M%C3%B6bius+strip+parametric+equations&lk=1&a=ClashPrefs_*Surface.MoebiusStrip.SurfaceProperty.ParametricEquations-
u = u - 0.5;
const v = 2 * Math.PI * t;
const a = 2;
const x = Math.cos( v ) * ( a + u * Math.cos( v / 2 ) );
const y = Math.sin( v ) * ( a + u * Math.cos( v / 2 ) );
const z = u * Math.sin( v / 2 );
target.set( x, y, z );
}
/**
* A parametric function representing a volumetric mobius strip.
*
* @param {number} u - The `u` coordinate on the surface in the range `[0,1]`.
* @param {number} t - The `v` coordinate on the surface in the range `[0,1]`.
* @param {Vector3} target - The target vector that is used to store the method's result.
*/
function mobius3d( u, t, target ) {
u *= Math.PI;
t *= 2 * Math.PI;
u = u * 2;
const phi = u / 2;
const major = 2.25, a = 0.125, b = 0.65;
let x = a * Math.cos( t ) * Math.cos( phi ) - b * Math.sin( t ) * Math.sin( phi );
const z = a * Math.cos( t ) * Math.sin( phi ) + b * Math.sin( t ) * Math.cos( phi );
const y = ( major + x ) * Math.sin( u );
x = ( major + x ) * Math.cos( u );
target.set( x, y, z );
}
export { klein, plane, mobius, mobius3d };

View File

@@ -0,0 +1,172 @@
import {
BufferGeometry,
Float32BufferAttribute,
Vector3
} from 'three';
/**
* This class can be used to generate a geometry based on a parametric surface.
*
* Reference: [Mesh Generation with Python]{@link https://prideout.net/blog/old/blog/index.html@p=44.html}
*
* ```js
* const geometry = new THREE.ParametricGeometry( klein, 25, 25 );
* const material = new THREE.MeshBasicMaterial( { color: 0x00ff00 } );
* const klein = new THREE.Mesh( geometry, material );
* scene.add( klein );
* ```
*
* @augments BufferGeometry
* @three_import import { ParametricGeometry } from 'three/addons/geometries/ParametricGeometry.js';
*/
class ParametricGeometry extends BufferGeometry {
/**
* Constructs a new parametric geometry.
*
* @param {ParametricGeometry~Func} func - The parametric function. Default is a function that generates a curved plane surface.
* @param {number} [slices=8] - The number of slices to use for the parametric function.
* @param {number} [stacks=8] - The stacks of slices to use for the parametric function.
*/
constructor( func = ( u, v, target ) => target.set( u, v, Math.cos( u ) * Math.sin( v ) ), slices = 8, stacks = 8 ) {
super();
this.type = 'ParametricGeometry';
/**
* Holds the constructor parameters that have been
* used to generate the geometry. Any modification
* after instantiation does not change the geometry.
*
* @type {Object}
*/
this.parameters = {
func: func,
slices: slices,
stacks: stacks
};
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
const EPS = 0.00001;
const normal = new Vector3();
const p0 = new Vector3(), p1 = new Vector3();
const pu = new Vector3(), pv = new Vector3();
// generate vertices, normals and uvs
const sliceCount = slices + 1;
for ( let i = 0; i <= stacks; i ++ ) {
const v = i / stacks;
for ( let j = 0; j <= slices; j ++ ) {
const u = j / slices;
// vertex
func( u, v, p0 );
vertices.push( p0.x, p0.y, p0.z );
// normal
// approximate tangent vectors via finite differences
if ( u - EPS >= 0 ) {
func( u - EPS, v, p1 );
pu.subVectors( p0, p1 );
} else {
func( u + EPS, v, p1 );
pu.subVectors( p1, p0 );
}
if ( v - EPS >= 0 ) {
func( u, v - EPS, p1 );
pv.subVectors( p0, p1 );
} else {
func( u, v + EPS, p1 );
pv.subVectors( p1, p0 );
}
// cross product of tangent vectors returns surface normal
normal.crossVectors( pu, pv ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( u, v );
}
}
// generate indices
for ( let i = 0; i < stacks; i ++ ) {
for ( let j = 0; j < slices; j ++ ) {
const a = i * sliceCount + j;
const b = i * sliceCount + j + 1;
const c = ( i + 1 ) * sliceCount + j + 1;
const d = ( i + 1 ) * sliceCount + j;
// faces one and two
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
}
/**
* Parametric function definition of `ParametricGeometry`.
*
* @callback ParametricGeometry~Func
* @param {number} u - The `u` coordinate on the surface in the range `[0,1]`.
* @param {number} v - The `v` coordinate on the surface in the range `[0,1]`.
* @param {Vector3} target - The target vector that is used to store the method's result.
*/
export { ParametricGeometry };

View File

@@ -0,0 +1,216 @@
import {
BoxGeometry,
Vector3
} from 'three';
const _tempNormal = new Vector3();
function getUv( faceDirVector, normal, uvAxis, projectionAxis, radius, sideLength ) {
const totArcLength = 2 * Math.PI * radius / 4;
// length of the planes between the arcs on each axis
const centerLength = Math.max( sideLength - 2 * radius, 0 );
const halfArc = Math.PI / 4;
// Get the vector projected onto the Y plane
_tempNormal.copy( normal );
_tempNormal[ projectionAxis ] = 0;
_tempNormal.normalize();
// total amount of UV space alloted to a single arc
const arcUvRatio = 0.5 * totArcLength / ( totArcLength + centerLength );
// the distance along one arc the point is at
const arcAngleRatio = 1.0 - ( _tempNormal.angleTo( faceDirVector ) / halfArc );
if ( Math.sign( _tempNormal[ uvAxis ] ) === 1 ) {
return arcAngleRatio * arcUvRatio;
} else {
// total amount of UV space alloted to the plane between the arcs
const lenUv = centerLength / ( totArcLength + centerLength );
return lenUv + arcUvRatio + arcUvRatio * ( 1.0 - arcAngleRatio );
}
}
/**
* A special type of box geometry with rounded corners and edges.
*
* ```js
* const geometry = new THREE.RoundedBoxGeometry();
* const material = new THREE.MeshStandardMaterial( { color: 0x00ff00 } );
* const cube = new THREE.Mesh( geometry, material );
* scene.add( cube );
* ```
*
* @augments BoxGeometry
* @three_import import { RoundedBoxGeometry } from 'three/addons/geometries/RoundedBoxGeometry.js';
*/
class RoundedBoxGeometry extends BoxGeometry {
/**
* Constructs a new rounded box geometry.
*
* @param {number} [width=1] - The width. That is, the length of the edges parallel to the X axis.
* @param {number} [height=1] - The height. That is, the length of the edges parallel to the Y axis.
* @param {number} [depth=1] - The depth. That is, the length of the edges parallel to the Z axis.
* @param {number} [segments=2] - Number of segments that form the rounded corners.
* @param {number} [radius=0.1] - The radius of the rounded corners.
*/
constructor( width = 1, height = 1, depth = 1, segments = 2, radius = 0.1 ) {
// calculate total segments needed &
// ensure it's odd so that we have a plane connecting the rounded corners
const totalSegments = segments * 2 + 1;
// ensure radius isn't bigger than shortest side
radius = Math.min( width / 2, height / 2, depth / 2, radius );
// start with a unit box geometry, its vertices will be modified to form the rounded box
super( 1, 1, 1, totalSegments, totalSegments, totalSegments );
this.type = 'RoundedBoxGeometry';
/**
* Holds the constructor parameters that have been
* used to generate the geometry. Any modification
* after instantiation does not change the geometry.
*
* @type {Object}
*/
this.parameters = {
width: width,
height: height,
depth: depth,
segments: segments,
radius: radius,
};
// if totalSegments is 1, no rounding is needed - return regular box
if ( totalSegments === 1 ) return;
const geometry2 = this.toNonIndexed();
this.index = null;
this.attributes.position = geometry2.attributes.position;
this.attributes.normal = geometry2.attributes.normal;
this.attributes.uv = geometry2.attributes.uv;
//
const position = new Vector3();
const normal = new Vector3();
const box = new Vector3( width, height, depth ).divideScalar( 2 ).subScalar( radius );
const positions = this.attributes.position.array;
const normals = this.attributes.normal.array;
const uvs = this.attributes.uv.array;
const faceTris = positions.length / 6;
const faceDirVector = new Vector3();
const halfSegmentSize = 0.5 / totalSegments;
for ( let i = 0, j = 0; i < positions.length; i += 3, j += 2 ) {
position.fromArray( positions, i );
normal.copy( position );
normal.x -= Math.sign( normal.x ) * halfSegmentSize;
normal.y -= Math.sign( normal.y ) * halfSegmentSize;
normal.z -= Math.sign( normal.z ) * halfSegmentSize;
normal.normalize();
positions[ i + 0 ] = box.x * Math.sign( position.x ) + normal.x * radius;
positions[ i + 1 ] = box.y * Math.sign( position.y ) + normal.y * radius;
positions[ i + 2 ] = box.z * Math.sign( position.z ) + normal.z * radius;
normals[ i + 0 ] = normal.x;
normals[ i + 1 ] = normal.y;
normals[ i + 2 ] = normal.z;
const side = Math.floor( i / faceTris );
switch ( side ) {
case 0: // right
// generate UVs along Z then Y
faceDirVector.set( 1, 0, 0 );
uvs[ j + 0 ] = getUv( faceDirVector, normal, 'z', 'y', radius, depth );
uvs[ j + 1 ] = 1.0 - getUv( faceDirVector, normal, 'y', 'z', radius, height );
break;
case 1: // left
// generate UVs along Z then Y
faceDirVector.set( - 1, 0, 0 );
uvs[ j + 0 ] = 1.0 - getUv( faceDirVector, normal, 'z', 'y', radius, depth );
uvs[ j + 1 ] = 1.0 - getUv( faceDirVector, normal, 'y', 'z', radius, height );
break;
case 2: // top
// generate UVs along X then Z
faceDirVector.set( 0, 1, 0 );
uvs[ j + 0 ] = 1.0 - getUv( faceDirVector, normal, 'x', 'z', radius, width );
uvs[ j + 1 ] = getUv( faceDirVector, normal, 'z', 'x', radius, depth );
break;
case 3: // bottom
// generate UVs along X then Z
faceDirVector.set( 0, - 1, 0 );
uvs[ j + 0 ] = 1.0 - getUv( faceDirVector, normal, 'x', 'z', radius, width );
uvs[ j + 1 ] = 1.0 - getUv( faceDirVector, normal, 'z', 'x', radius, depth );
break;
case 4: // front
// generate UVs along X then Y
faceDirVector.set( 0, 0, 1 );
uvs[ j + 0 ] = 1.0 - getUv( faceDirVector, normal, 'x', 'y', radius, width );
uvs[ j + 1 ] = 1.0 - getUv( faceDirVector, normal, 'y', 'x', radius, height );
break;
case 5: // back
// generate UVs along X then Y
faceDirVector.set( 0, 0, - 1 );
uvs[ j + 0 ] = getUv( faceDirVector, normal, 'x', 'y', radius, width );
uvs[ j + 1 ] = 1.0 - getUv( faceDirVector, normal, 'y', 'x', radius, height );
break;
}
}
}
/**
* Factory method for creating an instance of this class from the given
* JSON object.
*
* @param {Object} data - A JSON object representing the serialized geometry.
* @returns {RoundedBoxGeometry} A new instance.
*/
static fromJSON( data ) {
return new RoundedBoxGeometry(
data.width,
data.height,
data.depth,
data.segments,
data.radius
);
}
}
export { RoundedBoxGeometry };

View File

@@ -0,0 +1,689 @@
import {
BufferAttribute,
BufferGeometry,
Matrix4,
Vector3,
Vector4
} from 'three';
/**
* Tessellates the famous Utah teapot database by Martin Newell into triangles.
*
* The teapot should normally be rendered as a double sided object, since for some
* patches both sides can be seen, e.g., the gap around the lid and inside the spout.
*
* Segments 'n' determines the number of triangles output. Total triangles = 32*2*n*n - 8*n
* (degenerates at the top and bottom cusps are deleted).
*
* Code based on [SPD software]{@link http://tog.acm.org/resources/SPD/}
* Created for the Udacity course [Interactive Rendering]{@link http://bit.ly/ericity}
*
* ```js
* const geometry = new TeapotGeometry( 50, 18 );
* const material = new THREE.MeshBasicMaterial( { color: 0x00ff00 } );
* const teapot = new THREE.Mesh( geometry, material );
* scene.add( teapot );
* ```
*
* @augments BufferGeometry
* @three_import import { TeapotGeometry } from 'three/addons/geometries/TeapotGeometry.js';
*/
class TeapotGeometry extends BufferGeometry {
/**
* Constructs a new teapot geometry.
*
* @param {number} [size=50] - Relative scale of the teapot.
* @param {number} [segments=10] - Number of line segments to subdivide each patch edge.
* @param {boolean} [bottom=true] - Whether the bottom of the teapot is generated or not.
* @param {boolean} [lid=true] - Whether the lid is generated or not.
* @param {boolean} [body=true] - Whether the body is generated or not.
* @param {boolean} [fitLid=true] - Whether the lid is slightly stretched to prevent gaps between the body and lid or not.
* @param {boolean} [blinn=true] - Whether the teapot is scaled vertically for better aesthetics or not.
*/
constructor( size = 50, segments = 10, bottom = true, lid = true, body = true, fitLid = true, blinn = true ) {
// 32 * 4 * 4 Bezier spline patches
const teapotPatches = [
/*rim*/
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
3, 16, 17, 18, 7, 19, 20, 21, 11, 22, 23, 24, 15, 25, 26, 27,
18, 28, 29, 30, 21, 31, 32, 33, 24, 34, 35, 36, 27, 37, 38, 39,
30, 40, 41, 0, 33, 42, 43, 4, 36, 44, 45, 8, 39, 46, 47, 12,
/*body*/
12, 13, 14, 15, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
15, 25, 26, 27, 51, 60, 61, 62, 55, 63, 64, 65, 59, 66, 67, 68,
27, 37, 38, 39, 62, 69, 70, 71, 65, 72, 73, 74, 68, 75, 76, 77,
39, 46, 47, 12, 71, 78, 79, 48, 74, 80, 81, 52, 77, 82, 83, 56,
56, 57, 58, 59, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
59, 66, 67, 68, 87, 96, 97, 98, 91, 99, 100, 101, 95, 102, 103, 104,
68, 75, 76, 77, 98, 105, 106, 107, 101, 108, 109, 110, 104, 111, 112, 113,
77, 82, 83, 56, 107, 114, 115, 84, 110, 116, 117, 88, 113, 118, 119, 92,
/*handle*/
120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
123, 136, 137, 120, 127, 138, 139, 124, 131, 140, 141, 128, 135, 142, 143, 132,
132, 133, 134, 135, 144, 145, 146, 147, 148, 149, 150, 151, 68, 152, 153, 154,
135, 142, 143, 132, 147, 155, 156, 144, 151, 157, 158, 148, 154, 159, 160, 68,
/*spout*/
161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,
164, 177, 178, 161, 168, 179, 180, 165, 172, 181, 182, 169, 176, 183, 184, 173,
173, 174, 175, 176, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
176, 183, 184, 173, 188, 197, 198, 185, 192, 199, 200, 189, 196, 201, 202, 193,
/*lid*/
203, 203, 203, 203, 204, 205, 206, 207, 208, 208, 208, 208, 209, 210, 211, 212,
203, 203, 203, 203, 207, 213, 214, 215, 208, 208, 208, 208, 212, 216, 217, 218,
203, 203, 203, 203, 215, 219, 220, 221, 208, 208, 208, 208, 218, 222, 223, 224,
203, 203, 203, 203, 221, 225, 226, 204, 208, 208, 208, 208, 224, 227, 228, 209,
209, 210, 211, 212, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240,
212, 216, 217, 218, 232, 241, 242, 243, 236, 244, 245, 246, 240, 247, 248, 249,
218, 222, 223, 224, 243, 250, 251, 252, 246, 253, 254, 255, 249, 256, 257, 258,
224, 227, 228, 209, 252, 259, 260, 229, 255, 261, 262, 233, 258, 263, 264, 237,
/*bottom*/
265, 265, 265, 265, 266, 267, 268, 269, 270, 271, 272, 273, 92, 119, 118, 113,
265, 265, 265, 265, 269, 274, 275, 276, 273, 277, 278, 279, 113, 112, 111, 104,
265, 265, 265, 265, 276, 280, 281, 282, 279, 283, 284, 285, 104, 103, 102, 95,
265, 265, 265, 265, 282, 286, 287, 266, 285, 288, 289, 270, 95, 94, 93, 92
];
const teapotVertices = [
1.4, 0, 2.4,
1.4, - 0.784, 2.4,
0.784, - 1.4, 2.4,
0, - 1.4, 2.4,
1.3375, 0, 2.53125,
1.3375, - 0.749, 2.53125,
0.749, - 1.3375, 2.53125,
0, - 1.3375, 2.53125,
1.4375, 0, 2.53125,
1.4375, - 0.805, 2.53125,
0.805, - 1.4375, 2.53125,
0, - 1.4375, 2.53125,
1.5, 0, 2.4,
1.5, - 0.84, 2.4,
0.84, - 1.5, 2.4,
0, - 1.5, 2.4,
- 0.784, - 1.4, 2.4,
- 1.4, - 0.784, 2.4,
- 1.4, 0, 2.4,
- 0.749, - 1.3375, 2.53125,
- 1.3375, - 0.749, 2.53125,
- 1.3375, 0, 2.53125,
- 0.805, - 1.4375, 2.53125,
- 1.4375, - 0.805, 2.53125,
- 1.4375, 0, 2.53125,
- 0.84, - 1.5, 2.4,
- 1.5, - 0.84, 2.4,
- 1.5, 0, 2.4,
- 1.4, 0.784, 2.4,
- 0.784, 1.4, 2.4,
0, 1.4, 2.4,
- 1.3375, 0.749, 2.53125,
- 0.749, 1.3375, 2.53125,
0, 1.3375, 2.53125,
- 1.4375, 0.805, 2.53125,
- 0.805, 1.4375, 2.53125,
0, 1.4375, 2.53125,
- 1.5, 0.84, 2.4,
- 0.84, 1.5, 2.4,
0, 1.5, 2.4,
0.784, 1.4, 2.4,
1.4, 0.784, 2.4,
0.749, 1.3375, 2.53125,
1.3375, 0.749, 2.53125,
0.805, 1.4375, 2.53125,
1.4375, 0.805, 2.53125,
0.84, 1.5, 2.4,
1.5, 0.84, 2.4,
1.75, 0, 1.875,
1.75, - 0.98, 1.875,
0.98, - 1.75, 1.875,
0, - 1.75, 1.875,
2, 0, 1.35,
2, - 1.12, 1.35,
1.12, - 2, 1.35,
0, - 2, 1.35,
2, 0, 0.9,
2, - 1.12, 0.9,
1.12, - 2, 0.9,
0, - 2, 0.9,
- 0.98, - 1.75, 1.875,
- 1.75, - 0.98, 1.875,
- 1.75, 0, 1.875,
- 1.12, - 2, 1.35,
- 2, - 1.12, 1.35,
- 2, 0, 1.35,
- 1.12, - 2, 0.9,
- 2, - 1.12, 0.9,
- 2, 0, 0.9,
- 1.75, 0.98, 1.875,
- 0.98, 1.75, 1.875,
0, 1.75, 1.875,
- 2, 1.12, 1.35,
- 1.12, 2, 1.35,
0, 2, 1.35,
- 2, 1.12, 0.9,
- 1.12, 2, 0.9,
0, 2, 0.9,
0.98, 1.75, 1.875,
1.75, 0.98, 1.875,
1.12, 2, 1.35,
2, 1.12, 1.35,
1.12, 2, 0.9,
2, 1.12, 0.9,
2, 0, 0.45,
2, - 1.12, 0.45,
1.12, - 2, 0.45,
0, - 2, 0.45,
1.5, 0, 0.225,
1.5, - 0.84, 0.225,
0.84, - 1.5, 0.225,
0, - 1.5, 0.225,
1.5, 0, 0.15,
1.5, - 0.84, 0.15,
0.84, - 1.5, 0.15,
0, - 1.5, 0.15,
- 1.12, - 2, 0.45,
- 2, - 1.12, 0.45,
- 2, 0, 0.45,
- 0.84, - 1.5, 0.225,
- 1.5, - 0.84, 0.225,
- 1.5, 0, 0.225,
- 0.84, - 1.5, 0.15,
- 1.5, - 0.84, 0.15,
- 1.5, 0, 0.15,
- 2, 1.12, 0.45,
- 1.12, 2, 0.45,
0, 2, 0.45,
- 1.5, 0.84, 0.225,
- 0.84, 1.5, 0.225,
0, 1.5, 0.225,
- 1.5, 0.84, 0.15,
- 0.84, 1.5, 0.15,
0, 1.5, 0.15,
1.12, 2, 0.45,
2, 1.12, 0.45,
0.84, 1.5, 0.225,
1.5, 0.84, 0.225,
0.84, 1.5, 0.15,
1.5, 0.84, 0.15,
- 1.6, 0, 2.025,
- 1.6, - 0.3, 2.025,
- 1.5, - 0.3, 2.25,
- 1.5, 0, 2.25,
- 2.3, 0, 2.025,
- 2.3, - 0.3, 2.025,
- 2.5, - 0.3, 2.25,
- 2.5, 0, 2.25,
- 2.7, 0, 2.025,
- 2.7, - 0.3, 2.025,
- 3, - 0.3, 2.25,
- 3, 0, 2.25,
- 2.7, 0, 1.8,
- 2.7, - 0.3, 1.8,
- 3, - 0.3, 1.8,
- 3, 0, 1.8,
- 1.5, 0.3, 2.25,
- 1.6, 0.3, 2.025,
- 2.5, 0.3, 2.25,
- 2.3, 0.3, 2.025,
- 3, 0.3, 2.25,
- 2.7, 0.3, 2.025,
- 3, 0.3, 1.8,
- 2.7, 0.3, 1.8,
- 2.7, 0, 1.575,
- 2.7, - 0.3, 1.575,
- 3, - 0.3, 1.35,
- 3, 0, 1.35,
- 2.5, 0, 1.125,
- 2.5, - 0.3, 1.125,
- 2.65, - 0.3, 0.9375,
- 2.65, 0, 0.9375,
- 2, - 0.3, 0.9,
- 1.9, - 0.3, 0.6,
- 1.9, 0, 0.6,
- 3, 0.3, 1.35,
- 2.7, 0.3, 1.575,
- 2.65, 0.3, 0.9375,
- 2.5, 0.3, 1.125,
- 1.9, 0.3, 0.6,
- 2, 0.3, 0.9,
1.7, 0, 1.425,
1.7, - 0.66, 1.425,
1.7, - 0.66, 0.6,
1.7, 0, 0.6,
2.6, 0, 1.425,
2.6, - 0.66, 1.425,
3.1, - 0.66, 0.825,
3.1, 0, 0.825,
2.3, 0, 2.1,
2.3, - 0.25, 2.1,
2.4, - 0.25, 2.025,
2.4, 0, 2.025,
2.7, 0, 2.4,
2.7, - 0.25, 2.4,
3.3, - 0.25, 2.4,
3.3, 0, 2.4,
1.7, 0.66, 0.6,
1.7, 0.66, 1.425,
3.1, 0.66, 0.825,
2.6, 0.66, 1.425,
2.4, 0.25, 2.025,
2.3, 0.25, 2.1,
3.3, 0.25, 2.4,
2.7, 0.25, 2.4,
2.8, 0, 2.475,
2.8, - 0.25, 2.475,
3.525, - 0.25, 2.49375,
3.525, 0, 2.49375,
2.9, 0, 2.475,
2.9, - 0.15, 2.475,
3.45, - 0.15, 2.5125,
3.45, 0, 2.5125,
2.8, 0, 2.4,
2.8, - 0.15, 2.4,
3.2, - 0.15, 2.4,
3.2, 0, 2.4,
3.525, 0.25, 2.49375,
2.8, 0.25, 2.475,
3.45, 0.15, 2.5125,
2.9, 0.15, 2.475,
3.2, 0.15, 2.4,
2.8, 0.15, 2.4,
0, 0, 3.15,
0.8, 0, 3.15,
0.8, - 0.45, 3.15,
0.45, - 0.8, 3.15,
0, - 0.8, 3.15,
0, 0, 2.85,
0.2, 0, 2.7,
0.2, - 0.112, 2.7,
0.112, - 0.2, 2.7,
0, - 0.2, 2.7,
- 0.45, - 0.8, 3.15,
- 0.8, - 0.45, 3.15,
- 0.8, 0, 3.15,
- 0.112, - 0.2, 2.7,
- 0.2, - 0.112, 2.7,
- 0.2, 0, 2.7,
- 0.8, 0.45, 3.15,
- 0.45, 0.8, 3.15,
0, 0.8, 3.15,
- 0.2, 0.112, 2.7,
- 0.112, 0.2, 2.7,
0, 0.2, 2.7,
0.45, 0.8, 3.15,
0.8, 0.45, 3.15,
0.112, 0.2, 2.7,
0.2, 0.112, 2.7,
0.4, 0, 2.55,
0.4, - 0.224, 2.55,
0.224, - 0.4, 2.55,
0, - 0.4, 2.55,
1.3, 0, 2.55,
1.3, - 0.728, 2.55,
0.728, - 1.3, 2.55,
0, - 1.3, 2.55,
1.3, 0, 2.4,
1.3, - 0.728, 2.4,
0.728, - 1.3, 2.4,
0, - 1.3, 2.4,
- 0.224, - 0.4, 2.55,
- 0.4, - 0.224, 2.55,
- 0.4, 0, 2.55,
- 0.728, - 1.3, 2.55,
- 1.3, - 0.728, 2.55,
- 1.3, 0, 2.55,
- 0.728, - 1.3, 2.4,
- 1.3, - 0.728, 2.4,
- 1.3, 0, 2.4,
- 0.4, 0.224, 2.55,
- 0.224, 0.4, 2.55,
0, 0.4, 2.55,
- 1.3, 0.728, 2.55,
- 0.728, 1.3, 2.55,
0, 1.3, 2.55,
- 1.3, 0.728, 2.4,
- 0.728, 1.3, 2.4,
0, 1.3, 2.4,
0.224, 0.4, 2.55,
0.4, 0.224, 2.55,
0.728, 1.3, 2.55,
1.3, 0.728, 2.55,
0.728, 1.3, 2.4,
1.3, 0.728, 2.4,
0, 0, 0,
1.425, 0, 0,
1.425, 0.798, 0,
0.798, 1.425, 0,
0, 1.425, 0,
1.5, 0, 0.075,
1.5, 0.84, 0.075,
0.84, 1.5, 0.075,
0, 1.5, 0.075,
- 0.798, 1.425, 0,
- 1.425, 0.798, 0,
- 1.425, 0, 0,
- 0.84, 1.5, 0.075,
- 1.5, 0.84, 0.075,
- 1.5, 0, 0.075,
- 1.425, - 0.798, 0,
- 0.798, - 1.425, 0,
0, - 1.425, 0,
- 1.5, - 0.84, 0.075,
- 0.84, - 1.5, 0.075,
0, - 1.5, 0.075,
0.798, - 1.425, 0,
1.425, - 0.798, 0,
0.84, - 1.5, 0.075,
1.5, - 0.84, 0.075
];
super();
// number of segments per patch
segments = Math.max( 2, Math.floor( segments ) );
// Jim Blinn scaled the teapot down in size by about 1.3 for
// some rendering tests. He liked the new proportions that he kept
// the data in this form. The model was distributed with these new
// proportions and became the norm. Trivia: comparing images of the
// real teapot and the computer model, the ratio for the bowl of the
// real teapot is more like 1.25, but since 1.3 is the traditional
// value given, we use it here.
const blinnScale = 1.3;
// scale the size to be the real scaling factor
const maxHeight = 3.15 * ( blinn ? 1 : blinnScale );
const maxHeight2 = maxHeight / 2;
const trueSize = size / maxHeight2;
// Number of elements depends on what is needed. Subtract degenerate
// triangles at tip of bottom and lid out in advance.
let numTriangles = bottom ? ( 8 * segments - 4 ) * segments : 0;
numTriangles += lid ? ( 16 * segments - 4 ) * segments : 0;
numTriangles += body ? 40 * segments * segments : 0;
const indices = new Uint32Array( numTriangles * 3 );
let numVertices = bottom ? 4 : 0;
numVertices += lid ? 8 : 0;
numVertices += body ? 20 : 0;
numVertices *= ( segments + 1 ) * ( segments + 1 );
const vertices = new Float32Array( numVertices * 3 );
const normals = new Float32Array( numVertices * 3 );
const uvs = new Float32Array( numVertices * 2 );
// Bezier form
const ms = new Matrix4();
ms.set(
- 1.0, 3.0, - 3.0, 1.0,
3.0, - 6.0, 3.0, 0.0,
- 3.0, 3.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0 );
const g = [];
const sp = [];
const tp = [];
const dsp = [];
const dtp = [];
// M * G * M matrix, sort of see
// http://www.cs.helsinki.fi/group/goa/mallinnus/curves/surfaces.html
const mgm = [];
const vert = [];
const sdir = [];
const tdir = [];
const norm = new Vector3();
let tcoord;
let sval;
let tval;
let p;
let dsval = 0;
let dtval = 0;
const normOut = new Vector3();
const gmx = new Matrix4();
const tmtx = new Matrix4();
const vsp = new Vector4();
const vtp = new Vector4();
const vdsp = new Vector4();
const vdtp = new Vector4();
const vsdir = new Vector3();
const vtdir = new Vector3();
const mst = ms.clone();
mst.transpose();
// internal function: test if triangle has any matching vertices;
// if so, don't save triangle, since it won't display anything.
const notDegenerate = ( vtx1, vtx2, vtx3 ) => // if any vertex matches, return false
! ( ( ( vertices[ vtx1 * 3 ] === vertices[ vtx2 * 3 ] ) &&
( vertices[ vtx1 * 3 + 1 ] === vertices[ vtx2 * 3 + 1 ] ) &&
( vertices[ vtx1 * 3 + 2 ] === vertices[ vtx2 * 3 + 2 ] ) ) ||
( ( vertices[ vtx1 * 3 ] === vertices[ vtx3 * 3 ] ) &&
( vertices[ vtx1 * 3 + 1 ] === vertices[ vtx3 * 3 + 1 ] ) &&
( vertices[ vtx1 * 3 + 2 ] === vertices[ vtx3 * 3 + 2 ] ) ) || ( vertices[ vtx2 * 3 ] === vertices[ vtx3 * 3 ] ) &&
( vertices[ vtx2 * 3 + 1 ] === vertices[ vtx3 * 3 + 1 ] ) &&
( vertices[ vtx2 * 3 + 2 ] === vertices[ vtx3 * 3 + 2 ] ) );
for ( let i = 0; i < 3; i ++ ) {
mgm[ i ] = new Matrix4();
}
const minPatches = body ? 0 : 20;
const maxPatches = bottom ? 32 : 28;
const vertPerRow = segments + 1;
let surfCount = 0;
let vertCount = 0;
let normCount = 0;
let uvCount = 0;
let indexCount = 0;
for ( let surf = minPatches; surf < maxPatches; surf ++ ) {
// lid is in the middle of the data, patches 20-27,
// so ignore it for this part of the loop if the lid is not desired
if ( lid || ( surf < 20 || surf >= 28 ) ) {
// get M * G * M matrix for x,y,z
for ( let i = 0; i < 3; i ++ ) {
// get control patches
for ( let r = 0; r < 4; r ++ ) {
for ( let c = 0; c < 4; c ++ ) {
// transposed
g[ c * 4 + r ] = teapotVertices[ teapotPatches[ surf * 16 + r * 4 + c ] * 3 + i ];
// is the lid to be made larger, and is this a point on the lid
// that is X or Y?
if ( fitLid && ( surf >= 20 && surf < 28 ) && ( i !== 2 ) ) {
// increase XY size by 7.7%, found empirically. I don't
// increase Z so that the teapot will continue to fit in the
// space -1 to 1 for Y (Y is up for the final model).
g[ c * 4 + r ] *= 1.077;
}
// Blinn "fixed" the teapot by dividing Z by blinnScale, and that's the
// data we now use. The original teapot is taller. Fix it:
if ( ! blinn && ( i === 2 ) ) {
g[ c * 4 + r ] *= blinnScale;
}
}
}
gmx.set( g[ 0 ], g[ 1 ], g[ 2 ], g[ 3 ], g[ 4 ], g[ 5 ], g[ 6 ], g[ 7 ], g[ 8 ], g[ 9 ], g[ 10 ], g[ 11 ], g[ 12 ], g[ 13 ], g[ 14 ], g[ 15 ] );
tmtx.multiplyMatrices( gmx, ms );
mgm[ i ].multiplyMatrices( mst, tmtx );
}
// step along, get points, and output
for ( let sstep = 0; sstep <= segments; sstep ++ ) {
const s = sstep / segments;
for ( let tstep = 0; tstep <= segments; tstep ++ ) {
const t = tstep / segments;
// point from basis
// get power vectors and their derivatives
for ( p = 4, sval = tval = 1.0; p --; ) {
sp[ p ] = sval;
tp[ p ] = tval;
sval *= s;
tval *= t;
if ( p === 3 ) {
dsp[ p ] = dtp[ p ] = 0.0;
dsval = dtval = 1.0;
} else {
dsp[ p ] = dsval * ( 3 - p );
dtp[ p ] = dtval * ( 3 - p );
dsval *= s;
dtval *= t;
}
}
vsp.fromArray( sp );
vtp.fromArray( tp );
vdsp.fromArray( dsp );
vdtp.fromArray( dtp );
// do for x,y,z
for ( let i = 0; i < 3; i ++ ) {
// multiply power vectors times matrix to get value
tcoord = vsp.clone();
tcoord.applyMatrix4( mgm[ i ] );
vert[ i ] = tcoord.dot( vtp );
// get s and t tangent vectors
tcoord = vdsp.clone();
tcoord.applyMatrix4( mgm[ i ] );
sdir[ i ] = tcoord.dot( vtp );
tcoord = vsp.clone();
tcoord.applyMatrix4( mgm[ i ] );
tdir[ i ] = tcoord.dot( vdtp );
}
// find normal
vsdir.fromArray( sdir );
vtdir.fromArray( tdir );
norm.crossVectors( vtdir, vsdir );
norm.normalize();
// if X and Z length is 0, at the cusp, so point the normal up or down, depending on patch number
if ( vert[ 0 ] === 0 && vert[ 1 ] === 0 ) {
// if above the middle of the teapot, normal points up, else down
normOut.set( 0, vert[ 2 ] > maxHeight2 ? 1 : - 1, 0 );
} else {
// standard output: rotate on X axis
normOut.set( norm.x, norm.z, - norm.y );
}
// store it all
vertices[ vertCount ++ ] = trueSize * vert[ 0 ];
vertices[ vertCount ++ ] = trueSize * ( vert[ 2 ] - maxHeight2 );
vertices[ vertCount ++ ] = - trueSize * vert[ 1 ];
normals[ normCount ++ ] = normOut.x;
normals[ normCount ++ ] = normOut.y;
normals[ normCount ++ ] = normOut.z;
uvs[ uvCount ++ ] = 1 - t;
uvs[ uvCount ++ ] = 1 - s;
}
}
// save the faces
for ( let sstep = 0; sstep < segments; sstep ++ ) {
for ( let tstep = 0; tstep < segments; tstep ++ ) {
const v1 = surfCount * vertPerRow * vertPerRow + sstep * vertPerRow + tstep;
const v2 = v1 + 1;
const v3 = v2 + vertPerRow;
const v4 = v1 + vertPerRow;
// Normals and UVs cannot be shared. Without clone(), you can see the consequences
// of sharing if you call geometry.applyMatrix4( matrix ).
if ( notDegenerate( v1, v2, v3 ) ) {
indices[ indexCount ++ ] = v1;
indices[ indexCount ++ ] = v2;
indices[ indexCount ++ ] = v3;
}
if ( notDegenerate( v1, v3, v4 ) ) {
indices[ indexCount ++ ] = v1;
indices[ indexCount ++ ] = v3;
indices[ indexCount ++ ] = v4;
}
}
}
// increment only if a surface was used
surfCount ++;
}
}
this.setIndex( new BufferAttribute( indices, 1 ) );
this.setAttribute( 'position', new BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new BufferAttribute( uvs, 2 ) );
this.computeBoundingSphere();
}
}
export { TeapotGeometry };

View File

@@ -0,0 +1,83 @@
import {
ExtrudeGeometry
} from 'three';
/**
* A class for generating text as a single geometry. It is constructed by providing a string of text, and a set of
* parameters consisting of a loaded font and extrude settings.
*
* See the {@link FontLoader} page for additional details.
*
* `TextGeometry` uses [typeface.json]{@link http://gero3.github.io/facetype.js/} generated fonts.
* Some existing fonts can be found located in `/examples/fonts`.
*
* ```js
* const loader = new FontLoader();
* const font = await loader.loadAsync( 'fonts/helvetiker_regular.typeface.json' );
* const geometry = new TextGeometry( 'Hello three.js!', {
* font: font,
* size: 80,
* depth: 5,
* curveSegments: 12
* } );
* ```
*
* @augments ExtrudeGeometry
* @three_import import { TextGeometry } from 'three/addons/geometries/TextGeometry.js';
*/
class TextGeometry extends ExtrudeGeometry {
/**
* Constructs a new text geometry.
*
* @param {string} text - The text that should be transformed into a geometry.
* @param {TextGeometry~Options} [parameters] - The text settings.
*/
constructor( text, parameters = {} ) {
const font = parameters.font;
if ( font === undefined ) {
super(); // generate default extrude geometry
} else {
const shapes = font.generateShapes( text, parameters.size );
// defaults
if ( parameters.depth === undefined ) parameters.depth = 50;
if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10;
if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8;
if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false;
super( shapes, parameters );
}
this.type = 'TextGeometry';
}
}
/**
* Represents the `options` type of the geometry's constructor.
*
* @typedef {Object} TextGeometry~Options
* @property {Font} [font] - The font.
* @property {number} [size=100] - The text size.
* @property {number} [depth=50] - Depth to extrude the shape.
* @property {number} [curveSegments=12] - Number of points on the curves.
* @property {number} [steps=1] - Number of points used for subdividing segments along the depth of the extruded spline.
* @property {boolean} [bevelEnabled=false] - Whether to beveling to the shape or not.
* @property {number} [bevelThickness=10] - How deep into the original shape the bevel goes.
* @property {number} [bevelSize=8] - Distance from the shape outline that the bevel extends.
* @property {number} [bevelOffset=0] - Distance from the shape outline that the bevel starts.
* @property {number} [bevelSegments=3] - Number of bevel layers.
* @property {?Curve} [extrudePath=null] - A 3D spline path along which the shape should be extruded. Bevels not supported for path extrusion.
* @property {Object} [UVGenerator] - An object that provides UV generator functions for custom UV generation.
**/
export { TextGeometry };