Files
Basilosaurusrex f027651f9b main repo
2025-11-24 18:09:40 +01:00

655 lines
20 KiB
JavaScript

import { HalfFloatType, RenderTarget, Vector2, RendererUtils, QuadMesh, TempNode, NodeMaterial, NodeUpdateType, LinearFilter, LinearMipmapLinearFilter } from 'three/webgpu';
import { texture, reference, viewZToPerspectiveDepth, logarithmicDepthToViewZ, getScreenPosition, getViewPosition, sqrt, mul, div, cross, float, Continue, Break, Loop, int, max, abs, sub, If, dot, reflect, normalize, screenCoordinate, nodeObject, Fn, passTexture, uv, uniform, perspectiveDepthToViewZ, orthographicDepthToViewZ, vec2, vec3, vec4 } from 'three/tsl';
import { boxBlur } from './boxBlur.js';
const _quadMesh = /*@__PURE__*/ new QuadMesh();
const _size = /*@__PURE__*/ new Vector2();
let _rendererState;
/**
* Post processing node for computing screen space reflections (SSR).
*
* Reference: {@link https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-reflection.html}
*
* @augments TempNode
* @three_import import { ssr } from 'three/addons/tsl/display/SSRNode.js';
*/
class SSRNode extends TempNode {
static get type() {
return 'SSRNode';
}
/**
* Constructs a new SSR node.
*
* @param {Node<vec4>} colorNode - The node that represents the beauty pass.
* @param {Node<float>} depthNode - A node that represents the beauty pass's depth.
* @param {Node<vec3>} normalNode - A node that represents the beauty pass's normals.
* @param {Node<float>} metalnessNode - A node that represents the beauty pass's metalness.
* @param {?Node<float>} [roughnessNode=null] - A node that represents the beauty pass's roughness.
* @param {?Camera} [camera=null] - The camera the scene is rendered with.
*/
constructor( colorNode, depthNode, normalNode, metalnessNode, roughnessNode = null, camera = null ) {
super( 'vec4' );
/**
* The node that represents the beauty pass.
*
* @type {Node<vec4>}
*/
this.colorNode = colorNode;
/**
* A node that represents the beauty pass's depth.
*
* @type {Node<float>}
*/
this.depthNode = depthNode;
/**
* A node that represents the beauty pass's normals.
*
* @type {Node<vec3>}
*/
this.normalNode = normalNode;
/**
* A node that represents the beauty pass's metalness.
*
* @type {Node<float>}
*/
this.metalnessNode = metalnessNode;
/**
* Whether the SSR reflections should be blurred or not. Blurring is a costly
* operation so turn it off if you encounter performance issues on certain
* devices.
*
* @private
* @type {Node<float>}
* @default false
*/
this.roughnessNode = roughnessNode;
/**
* The resolution scale. Valid values are in the range
* `[0,1]`. `1` means best quality but also results in
* more computational overhead. Setting to `0.5` means
* the effect is computed in half-resolution.
*
* @type {number}
* @default 1
*/
this.resolutionScale = 1;
/**
* The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node renders
* its effect once per frame in `updateBefore()`.
*
* @type {string}
* @default 'frame'
*/
this.updateBeforeType = NodeUpdateType.FRAME;
/**
* Controls how far a fragment can reflect. Increasing this value result in more
* computational overhead but also increases the reflection distance.
*
* @type {UniformNode<float>}
*/
this.maxDistance = uniform( 1 );
/**
* Controls the cutoff between what counts as a possible reflection hit and what does not.
*
* @type {UniformNode<float>}
*/
this.thickness = uniform( 0.1 );
/**
* Controls how the SSR reflections are blended with the beauty pass.
*
* @type {UniformNode<float>}
*/
this.opacity = uniform( 1 );
/**
* This parameter controls how detailed the raymarching process works.
* The value ranges is `[0,1]` where `1` means best quality (the maximum number
* of raymarching iterations/samples) and `0` means no samples at all.
*
* A quality of `0.5` is usually sufficient for most use cases. Try to keep
* this parameter as low as possible. Larger values result in noticeable more
* overhead.
*
* @type {UniformNode<float>}
*/
this.quality = uniform( 0.5 );
/**
* The quality of the blur. Must be an integer in the range `[1,3]`.
*
* @type {UniformNode<int>}
*/
this.blurQuality = uniform( 2 );
//
if ( camera === null ) {
if ( this.colorNode.passNode && this.colorNode.passNode.isPassNode === true ) {
camera = this.colorNode.passNode.camera;
} else {
throw new Error( 'THREE.TSL: No camera found. ssr() requires a camera.' );
}
}
/**
* The camera the scene is rendered with.
*
* @type {Camera}
*/
this.camera = camera;
/**
* The spread of the blur. Automatically set when generating mips.
*
* @private
* @type {UniformNode<int>}
*/
this._blurSpread = uniform( 1 );
/**
* Represents the projection matrix of the scene's camera.
*
* @private
* @type {UniformNode<mat4>}
*/
this._cameraProjectionMatrix = uniform( camera.projectionMatrix );
/**
* Represents the inverse projection matrix of the scene's camera.
*
* @private
* @type {UniformNode<mat4>}
*/
this._cameraProjectionMatrixInverse = uniform( camera.projectionMatrixInverse );
/**
* Represents the near value of the scene's camera.
*
* @private
* @type {ReferenceNode<float>}
*/
this._cameraNear = reference( 'near', 'float', camera );
/**
* Represents the far value of the scene's camera.
*
* @private
* @type {ReferenceNode<float>}
*/
this._cameraFar = reference( 'far', 'float', camera );
/**
* Whether the scene's camera is perspective or orthographic.
*
* @private
* @type {UniformNode<bool>}
*/
this._isPerspectiveCamera = uniform( camera.isPerspectiveCamera );
/**
* The resolution of the pass.
*
* @private
* @type {UniformNode<vec2>}
*/
this._resolution = uniform( new Vector2() );
/**
* The render target the SSR is rendered into.
*
* @private
* @type {RenderTarget}
*/
this._ssrRenderTarget = new RenderTarget( 1, 1, { depthBuffer: false, type: HalfFloatType } );
this._ssrRenderTarget.texture.name = 'SSRNode.SSR';
/**
* The render target for the blurred SSR reflections.
*
* @private
* @type {RenderTarget}
*/
this._blurRenderTarget = new RenderTarget( 1, 1, { depthBuffer: false, type: HalfFloatType, minFilter: LinearMipmapLinearFilter, magFilter: LinearFilter } );
this._blurRenderTarget.texture.name = 'SSRNode.Blur';
this._blurRenderTarget.texture.mipmaps.push( {}, {}, {}, {}, {} );
/**
* The material that is used to render the effect.
*
* @private
* @type {NodeMaterial}
*/
this._ssrMaterial = new NodeMaterial();
this._ssrMaterial.name = 'SSRNode.SSR';
/**
* The blur material.
*
* @private
* @type {NodeMaterial}
*/
this._blurMaterial = new NodeMaterial();
this._blurMaterial.name = 'SSRNode.Blur';
/**
* The copy material.
*
* @private
* @type {NodeMaterial}
*/
this._copyMaterial = new NodeMaterial();
this._copyMaterial.name = 'SSRNode.Copy';
/**
* The result of the effect is represented as a separate texture node.
*
* @private
* @type {PassTextureNode}
*/
this._textureNode = passTexture( this, this._ssrRenderTarget.texture );
let blurredTextureNode = null;
if ( this.roughnessNode !== null ) {
const mips = this._blurRenderTarget.texture.mipmaps.length - 1;
const lod = float( this.roughnessNode ).mul( mips ).clamp( 0, mips );
blurredTextureNode = passTexture( this, this._blurRenderTarget.texture ).level( lod );
}
/**
* Holds the blurred SSR reflections.
*
* @private
* @type {?PassTextureNode}
*/
this._blurredTextureNode = blurredTextureNode;
}
/**
* Returns the result of the effect as a texture node.
*
* @return {PassTextureNode} A texture node that represents the result of the effect.
*/
getTextureNode() {
return this.roughnessNode !== null ? this._blurredTextureNode : this._textureNode;
}
/**
* Sets the size of the effect.
*
* @param {number} width - The width of the effect.
* @param {number} height - The height of the effect.
*/
setSize( width, height ) {
width = Math.round( this.resolutionScale * width );
height = Math.round( this.resolutionScale * height );
this._resolution.value.set( width, height );
this._ssrRenderTarget.setSize( width, height );
this._blurRenderTarget.setSize( width, height );
}
/**
* This method is used to render the effect once per frame.
*
* @param {NodeFrame} frame - The current node frame.
*/
updateBefore( frame ) {
const { renderer } = frame;
_rendererState = RendererUtils.resetRendererState( renderer, _rendererState );
const ssrRenderTarget = this._ssrRenderTarget;
const blurRenderTarget = this._blurRenderTarget;
const size = renderer.getDrawingBufferSize( _size );
_quadMesh.material = this._ssrMaterial;
this.setSize( size.width, size.height );
// clear
renderer.setMRT( null );
renderer.setClearColor( 0x000000, 0 );
// ssr
renderer.setRenderTarget( ssrRenderTarget );
_quadMesh.render( renderer );
// blur (optional)
if ( this.roughnessNode !== null ) {
// blur mips but leave the base mip unblurred
for ( let i = 0; i < blurRenderTarget.texture.mipmaps.length; i ++ ) {
_quadMesh.material = ( i === 0 ) ? this._copyMaterial : this._blurMaterial;
this._blurSpread.value = i;
renderer.setRenderTarget( blurRenderTarget, 0, i );
_quadMesh.render( renderer );
}
}
// restore
RendererUtils.restoreRendererState( renderer, _rendererState );
}
/**
* This method is used to setup the effect's TSL code.
*
* @param {NodeBuilder} builder - The current node builder.
* @return {PassTextureNode}
*/
setup( builder ) {
const uvNode = uv();
const pointToLineDistance = Fn( ( [ point, linePointA, linePointB ] )=> {
// https://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
return cross( point.sub( linePointA ), point.sub( linePointB ) ).length().div( linePointB.sub( linePointA ).length() );
} );
const pointPlaneDistance = Fn( ( [ point, planePoint, planeNormal ] )=> {
// https://mathworld.wolfram.com/Point-PlaneDistance.html
// https://en.wikipedia.org/wiki/Plane_(geometry)
// http://paulbourke.net/geometry/pointlineplane/
const d = mul( planeNormal.x, planePoint.x ).add( mul( planeNormal.y, planePoint.y ) ).add( mul( planeNormal.z, planePoint.z ) ).negate().toVar();
const denominator = sqrt( mul( planeNormal.x, planeNormal.x, ).add( mul( planeNormal.y, planeNormal.y ) ).add( mul( planeNormal.z, planeNormal.z ) ) ).toVar();
const distance = div( mul( planeNormal.x, point.x ).add( mul( planeNormal.y, point.y ) ).add( mul( planeNormal.z, point.z ) ).add( d ), denominator );
return distance;
} );
const getViewZ = Fn( ( [ depth ] ) => {
let viewZNode;
if ( this.camera.isPerspectiveCamera ) {
viewZNode = perspectiveDepthToViewZ( depth, this._cameraNear, this._cameraFar );
} else {
viewZNode = orthographicDepthToViewZ( depth, this._cameraNear, this._cameraFar );
}
return viewZNode;
} );
const sampleDepth = ( uv ) => {
const depth = this.depthNode.sample( uv ).r;
if ( builder.renderer.logarithmicDepthBuffer === true ) {
const viewZ = logarithmicDepthToViewZ( depth, this._cameraNear, this._cameraFar );
return viewZToPerspectiveDepth( viewZ, this._cameraNear, this._cameraFar );
}
return depth;
};
const ssr = Fn( () => {
const metalness = float( this.metalnessNode );
// fragments with no metalness do not reflect their environment
metalness.equal( 0.0 ).discard();
// compute some standard FX entities
const depth = sampleDepth( uvNode ).toVar();
const viewPosition = getViewPosition( uvNode, depth, this._cameraProjectionMatrixInverse ).toVar();
const viewNormal = this.normalNode.rgb.normalize().toVar();
// compute the direction from the position in view space to the camera
const viewIncidentDir = ( ( this.camera.isPerspectiveCamera ) ? normalize( viewPosition ) : vec3( 0, 0, - 1 ) ).toVar();
// compute the direction in which the light is reflected on the surface
const viewReflectDir = reflect( viewIncidentDir, viewNormal ).toVar();
// adapt maximum distance to the local geometry (see https://www.mathsisfun.com/algebra/vectors-dot-product.html)
const maxReflectRayLen = this.maxDistance.div( dot( viewIncidentDir.negate(), viewNormal ) ).toVar();
// compute the maximum point of the reflection ray in view space
const d1viewPosition = viewPosition.add( viewReflectDir.mul( maxReflectRayLen ) ).toVar();
// check if d1viewPosition lies behind the camera near plane
If( this._isPerspectiveCamera.and( d1viewPosition.z.greaterThan( this._cameraNear.negate() ) ), () => {
// if so, ensure d1viewPosition is clamped on the near plane.
// this prevents artifacts during the ray marching process
const t = sub( this._cameraNear.negate(), viewPosition.z ).div( viewReflectDir.z );
d1viewPosition.assign( viewPosition.add( viewReflectDir.mul( t ) ) );
} );
// d0 and d1 are the start and maximum points of the reflection ray in screen space
const d0 = screenCoordinate.xy.toVar();
const d1 = getScreenPosition( d1viewPosition, this._cameraProjectionMatrix ).mul( this._resolution ).toVar();
// below variables are used to control the raymarching process
// total length of the ray
const totalLen = d1.sub( d0 ).length().toVar();
// offset in x and y direction
const xLen = d1.x.sub( d0.x ).toVar();
const yLen = d1.y.sub( d0.y ).toVar();
// determine the larger delta
// The larger difference will help to determine how much to travel in the X and Y direction each iteration and
// how many iterations are needed to travel the entire ray
const totalStep = int( max( abs( xLen ), abs( yLen ) ).mul( this.quality.clamp() ) ).toConst();
// step sizes in the x and y directions
const xSpan = xLen.div( totalStep ).toVar();
const ySpan = yLen.div( totalStep ).toVar();
const output = vec4( 0 ).toVar();
// the actual ray marching loop
// starting from d0, the code gradually travels along the ray and looks for an intersection with the geometry.
// it does not exceed d1 (the maximum ray extend)
Loop( totalStep, ( { i } ) => {
// advance on the ray by computing a new position in screen coordinates
const xy = vec2( d0.x.add( xSpan.mul( float( i ) ) ), d0.y.add( ySpan.mul( float( i ) ) ) ).toVar();
// stop processing if the new position lies outside of the screen
If( xy.x.lessThan( 0 ).or( xy.x.greaterThan( this._resolution.x ) ).or( xy.y.lessThan( 0 ) ).or( xy.y.greaterThan( this._resolution.y ) ), () => {
Break();
} );
// compute new uv, depth and viewZ for the next fragment
const uvNode = xy.div( this._resolution );
const d = sampleDepth( uvNode ).toVar();
const vZ = getViewZ( d ).toVar();
const viewReflectRayZ = float( 0 ).toVar();
// normalized distance between the current position xy and the starting point d0
const s = xy.sub( d0 ).length().div( totalLen );
// depending on the camera type, we now compute the z-coordinate of the reflected ray at the current step in view space
If( this._isPerspectiveCamera, () => {
const recipVPZ = float( 1 ).div( viewPosition.z ).toVar();
viewReflectRayZ.assign( float( 1 ).div( recipVPZ.add( s.mul( float( 1 ).div( d1viewPosition.z ).sub( recipVPZ ) ) ) ) );
} ).Else( () => {
viewReflectRayZ.assign( viewPosition.z.add( s.mul( d1viewPosition.z.sub( viewPosition.z ) ) ) );
} );
// if viewReflectRayZ is less or equal than the real z-coordinate at this place, it potentially intersects the geometry
If( viewReflectRayZ.lessThanEqual( vZ ), () => {
// compute the distance of the new location to the ray in view space
// to clarify vP is the fragment's view position which is not an exact point on the ray
const vP = getViewPosition( uvNode, d, this._cameraProjectionMatrixInverse ).toVar();
const away = pointToLineDistance( vP, viewPosition, d1viewPosition ).toVar();
// compute the minimum thickness between the current fragment and its neighbor in the x-direction.
const xyNeighbor = vec2( xy.x.add( 1 ), xy.y ).toVar(); // move one pixel
const uvNeighbor = xyNeighbor.div( this._resolution );
const vPNeighbor = getViewPosition( uvNeighbor, d, this._cameraProjectionMatrixInverse ).toVar();
const minThickness = vPNeighbor.x.sub( vP.x ).toVar();
minThickness.mulAssign( 3 ); // expand a bit to avoid errors
const tk = max( minThickness, this.thickness ).toVar();
If( away.lessThanEqual( tk ), () => { // hit
const vN = this.normalNode.sample( uvNode ).rgb.normalize().toVar();
If( dot( viewReflectDir, vN ).greaterThanEqual( 0 ), () => {
// the reflected ray is pointing towards the same side as the fragment's normal (current ray position),
// which means it wouldn't reflect off the surface. The loop continues to the next step for the next ray sample.
Continue();
} );
// this distance represents the depth of the intersection point between the reflected ray and the scene.
const distance = pointPlaneDistance( vP, viewPosition, viewNormal ).toVar();
If( distance.greaterThan( this.maxDistance ), () => {
// Distance exceeding limit: The reflection is potentially too far away and
// might not contribute significantly to the final color
Break();
} );
const op = this.opacity.mul( metalness ).toVar();
// distance attenuation (the reflection should fade out the farther it is away from the surface)
const ratio = float( 1 ).sub( distance.div( this.maxDistance ) ).toVar();
const attenuation = ratio.mul( ratio );
op.mulAssign( attenuation );
// fresnel (reflect more light on surfaces that are viewed at grazing angles)
const fresnelCoe = div( dot( viewIncidentDir, viewReflectDir ).add( 1 ), 2 );
op.mulAssign( fresnelCoe );
// output
const reflectColor = this.colorNode.sample( uvNode );
output.assign( vec4( reflectColor.rgb, op ) );
Break();
} );
} );
} );
return output;
} );
this._ssrMaterial.fragmentNode = ssr().context( builder.getSharedContext() );
this._ssrMaterial.needsUpdate = true;
// below materials are used for blurring
const reflectionBuffer = texture( this._ssrRenderTarget.texture );
this._blurMaterial.fragmentNode = boxBlur( reflectionBuffer, { size: this.blurQuality, separation: this._blurSpread } );
this._blurMaterial.needsUpdate = true;
this._copyMaterial.fragmentNode = reflectionBuffer;
this._copyMaterial.needsUpdate = true;
//
return this.getTextureNode();
}
/**
* Frees internal resources. This method should be called
* when the effect is no longer required.
*/
dispose() {
this._ssrRenderTarget.dispose();
this._blurRenderTarget.dispose();
this._ssrMaterial.dispose();
this._blurMaterial.dispose();
this._copyMaterial.dispose();
}
}
export default SSRNode;
/**
* TSL function for creating screen space reflections (SSR).
*
* @tsl
* @function
* @param {Node<vec4>} colorNode - The node that represents the beauty pass.
* @param {Node<float>} depthNode - A node that represents the beauty pass's depth.
* @param {Node<vec3>} normalNode - A node that represents the beauty pass's normals.
* @param {Node<float>} metalnessNode - A node that represents the beauty pass's metalness.
* @param {?Node<float>} [roughnessNode=null] - A node that represents the beauty pass's roughness.
* @param {?Camera} [camera=null] - The camera the scene is rendered with.
* @returns {SSRNode}
*/
export const ssr = ( colorNode, depthNode, normalNode, metalnessNode, roughnessNode = null, camera = null ) => nodeObject( new SSRNode( nodeObject( colorNode ), nodeObject( depthNode ), nodeObject( normalNode ), nodeObject( metalnessNode ), nodeObject( roughnessNode ), camera ) );