Files
Basilosaurusrex f027651f9b main repo
2025-11-24 18:09:40 +01:00

462 lines
12 KiB
JavaScript

import { HalfFloatType, Vector2, RenderTarget, RendererUtils, QuadMesh, NodeMaterial, TempNode, NodeUpdateType, Matrix4 } from 'three/webgpu';
import { add, float, If, Loop, int, Fn, min, max, clamp, nodeObject, texture, uniform, uv, vec2, vec4, luminance, convertToTexture, passTexture, velocity } from 'three/tsl';
const _quadMesh = /*@__PURE__*/ new QuadMesh();
const _size = /*@__PURE__*/ new Vector2();
let _rendererState;
/**
* A special node that applies TRAA (Temporal Reprojection Anti-Aliasing).
*
* References:
* - {@link https://alextardif.com/TAA.html}
* - {@link https://www.elopezr.com/temporal-aa-and-the-quest-for-the-holy-trail/}
*
* @augments TempNode
* @three_import import { traa } from 'three/addons/tsl/display/TRAANode.js';
*/
class TRAANode extends TempNode {
static get type() {
return 'TRAANode';
}
/**
* Constructs a new TRAA node.
*
* @param {TextureNode} beautyNode - The texture node that represents the input of the effect.
* @param {TextureNode} depthNode - A node that represents the scene's depth.
* @param {TextureNode} velocityNode - A node that represents the scene's velocity.
* @param {Camera} camera - The camera the scene is rendered with.
*/
constructor( beautyNode, depthNode, velocityNode, camera ) {
super( 'vec4' );
/**
* This flag can be used for type testing.
*
* @type {boolean}
* @readonly
* @default true
*/
this.isTRAANode = true;
/**
* The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node renders
* its effect once per frame in `updateBefore()`.
*
* @type {string}
* @default 'frame'
*/
this.updateBeforeType = NodeUpdateType.FRAME;
/**
* The texture node that represents the input of the effect.
*
* @type {TextureNode}
*/
this.beautyNode = beautyNode;
/**
* A node that represents the scene's velocity.
*
* @type {TextureNode}
*/
this.depthNode = depthNode;
/**
* A node that represents the scene's velocity.
*
* @type {TextureNode}
*/
this.velocityNode = velocityNode;
/**
* The camera the scene is rendered with.
*
* @type {Camera}
*/
this.camera = camera;
/**
* The jitter index selects the current camera offset value.
*
* @private
* @type {number}
* @default 0
*/
this._jitterIndex = 0;
/**
* A uniform node holding the inverse resolution value.
*
* @private
* @type {UniformNode<vec2>}
*/
this._invSize = uniform( new Vector2() );
/**
* The render target that represents the history of frame data.
*
* @private
* @type {?RenderTarget}
*/
this._historyRenderTarget = new RenderTarget( 1, 1, { depthBuffer: false, type: HalfFloatType } );
this._historyRenderTarget.texture.name = 'TRAANode.history';
/**
* The render target for the resolve.
*
* @private
* @type {?RenderTarget}
*/
this._resolveRenderTarget = new RenderTarget( 1, 1, { depthBuffer: false, type: HalfFloatType } );
this._resolveRenderTarget.texture.name = 'TRAANode.resolve';
/**
* Material used for the resolve step.
*
* @private
* @type {NodeMaterial}
*/
this._resolveMaterial = new NodeMaterial();
this._resolveMaterial.name = 'TRAA.resolve';
/**
* The result of the effect is represented as a separate texture node.
*
* @private
* @type {PassTextureNode}
*/
this._textureNode = passTexture( this, this._resolveRenderTarget.texture );
/**
* Used to save the original/unjittered projection matrix.
*
* @private
* @type {Matrix4}
*/
this._originalProjectionMatrix = new Matrix4();
/**
* Sync the post processing stack with the TRAA node.
* @private
* @type {boolean}
*/
this._needsPostProcessingSync = false;
}
/**
* Returns the result of the effect as a texture node.
*
* @return {PassTextureNode} A texture node that represents the result of the effect.
*/
getTextureNode() {
return this._textureNode;
}
/**
* Sets the size of the effect.
*
* @param {number} width - The width of the effect.
* @param {number} height - The height of the effect.
*/
setSize( width, height ) {
this._historyRenderTarget.setSize( width, height );
this._resolveRenderTarget.setSize( width, height );
this._invSize.value.set( 1 / width, 1 / height );
}
/**
* Defines the TRAA's current jitter as a view offset
* to the scene's camera.
*
* @param {number} width - The width of the effect.
* @param {number} height - The height of the effect.
*/
setViewOffset( width, height ) {
// save original/unjittered projection matrix for velocity pass
this.camera.updateProjectionMatrix();
this._originalProjectionMatrix.copy( this.camera.projectionMatrix );
velocity.setProjectionMatrix( this._originalProjectionMatrix );
//
const viewOffset = {
fullWidth: width,
fullHeight: height,
offsetX: 0,
offsetY: 0,
width: width,
height: height
};
const jitterOffset = _JitterVectors[ this._jitterIndex ];
this.camera.setViewOffset(
viewOffset.fullWidth, viewOffset.fullHeight,
viewOffset.offsetX + jitterOffset[ 0 ] * 0.0625, viewOffset.offsetY + jitterOffset[ 1 ] * 0.0625, // 0.0625 = 1 / 16
viewOffset.width, viewOffset.height
);
}
/**
* Clears the view offset from the scene's camera.
*/
clearViewOffset() {
this.camera.clearViewOffset();
velocity.setProjectionMatrix( null );
// update jitter index
this._jitterIndex ++;
this._jitterIndex = this._jitterIndex % ( _JitterVectors.length - 1 );
}
/**
* This method is used to render the effect once per frame.
*
* @param {NodeFrame} frame - The current node frame.
*/
updateBefore( frame ) {
const { renderer } = frame;
// keep the TRAA in sync with the dimensions of the beauty node
const beautyRenderTarget = ( this.beautyNode.isRTTNode ) ? this.beautyNode.renderTarget : this.beautyNode.passNode.renderTarget;
const width = beautyRenderTarget.texture.width;
const height = beautyRenderTarget.texture.height;
//
if ( this._needsPostProcessingSync === true ) {
this.setViewOffset( width, height );
this._needsPostProcessingSync = false;
}
_rendererState = RendererUtils.resetRendererState( renderer, _rendererState );
//
const needsRestart = this._historyRenderTarget.width !== width || this._historyRenderTarget.height !== height;
this.setSize( width, height );
// every time when the dimensions change we need fresh history data
if ( needsRestart === true ) {
// bind and clear render target to make sure they are initialized after the resize which triggers a dispose()
renderer.setRenderTarget( this._historyRenderTarget );
renderer.clear();
renderer.setRenderTarget( this._resolveRenderTarget );
renderer.clear();
// make sure to reset the history with the contents of the beauty buffer otherwise subsequent frames after the
// resize will fade from a darker color to the correct one because the history was cleared with black.
renderer.copyTextureToTexture( beautyRenderTarget.texture, this._historyRenderTarget.texture );
}
// resolve
renderer.setRenderTarget( this._resolveRenderTarget );
_quadMesh.material = this._resolveMaterial;
_quadMesh.render( renderer );
renderer.setRenderTarget( null );
// update history
renderer.copyTextureToTexture( this._resolveRenderTarget.texture, this._historyRenderTarget.texture );
// restore
RendererUtils.restoreRendererState( renderer, _rendererState );
}
/**
* This method is used to setup the effect's render targets and TSL code.
*
* @param {NodeBuilder} builder - The current node builder.
* @return {PassTextureNode}
*/
setup( builder ) {
const postProcessing = builder.context.postProcessing;
if ( postProcessing ) {
this._needsPostProcessingSync = true;
postProcessing.context.onBeforePostProcessing = () => {
const size = builder.renderer.getDrawingBufferSize( _size );
this.setViewOffset( size.width, size.height );
};
postProcessing.context.onAfterPostProcessing = () => {
this.clearViewOffset();
};
}
const historyTexture = texture( this._historyRenderTarget.texture );
const sampleTexture = this.beautyNode;
const depthTexture = this.depthNode;
const velocityTexture = this.velocityNode;
const resolve = Fn( () => {
const uvNode = uv();
const minColor = vec4( 10000 ).toVar();
const maxColor = vec4( - 10000 ).toVar();
const closestDepth = float( 1 ).toVar();
const closestDepthPixelPosition = vec2( 0 ).toVar();
// sample a 3x3 neighborhood to create a box in color space
// clamping the history color with the resulting min/max colors mitigates ghosting
Loop( { start: int( - 1 ), end: int( 1 ), type: 'int', condition: '<=', name: 'x' }, ( { x } ) => {
Loop( { start: int( - 1 ), end: int( 1 ), type: 'int', condition: '<=', name: 'y' }, ( { y } ) => {
const uvNeighbor = uvNode.add( vec2( float( x ), float( y ) ).mul( this._invSize ) ).toVar();
const colorNeighbor = max( vec4( 0 ), sampleTexture.sample( uvNeighbor ) ).toVar(); // use max() to avoid propagate garbage values
minColor.assign( min( minColor, colorNeighbor ) );
maxColor.assign( max( maxColor, colorNeighbor ) );
const currentDepth = depthTexture.sample( uvNeighbor ).r.toVar();
// find the sample position of the closest depth in the neighborhood (used for velocity)
If( currentDepth.lessThan( closestDepth ), () => {
closestDepth.assign( currentDepth );
closestDepthPixelPosition.assign( uvNeighbor );
} );
} );
} );
// sampling/reprojection
const offset = velocityTexture.sample( closestDepthPixelPosition ).xy.mul( vec2( 0.5, - 0.5 ) ); // NDC to uv offset
const currentColor = sampleTexture.sample( uvNode );
const historyColor = historyTexture.sample( uvNode.sub( offset ) );
// clamping
const clampedHistoryColor = clamp( historyColor, minColor, maxColor );
// flicker reduction based on luminance weighing
const currentWeight = float( 0.05 ).toVar();
const historyWeight = currentWeight.oneMinus().toVar();
const compressedCurrent = currentColor.mul( float( 1 ).div( ( max( currentColor.r, currentColor.g, currentColor.b ).add( 1.0 ) ) ) );
const compressedHistory = clampedHistoryColor.mul( float( 1 ).div( ( max( clampedHistoryColor.r, clampedHistoryColor.g, clampedHistoryColor.b ).add( 1.0 ) ) ) );
const luminanceCurrent = luminance( compressedCurrent.rgb );
const luminanceHistory = luminance( compressedHistory.rgb );
currentWeight.mulAssign( float( 1.0 ).div( luminanceCurrent.add( 1 ) ) );
historyWeight.mulAssign( float( 1.0 ).div( luminanceHistory.add( 1 ) ) );
return add( currentColor.mul( currentWeight ), clampedHistoryColor.mul( historyWeight ) ).div( max( currentWeight.add( historyWeight ), 0.00001 ) );
} );
// materials
this._resolveMaterial.colorNode = resolve();
return this._textureNode;
}
/**
* Frees internal resources. This method should be called
* when the effect is no longer required.
*/
dispose() {
this._historyRenderTarget.dispose();
this._resolveRenderTarget.dispose();
this._resolveMaterial.dispose();
}
}
export default TRAANode;
// These jitter vectors are specified in integers because it is easier.
// I am assuming a [-8,8) integer grid, but it needs to be mapped onto [-0.5,0.5)
// before being used, thus these integers need to be scaled by 1/16.
//
// Sample patterns reference: https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
const _JitterVectors = [
[ - 4, - 7 ], [ - 7, - 5 ], [ - 3, - 5 ], [ - 5, - 4 ],
[ - 1, - 4 ], [ - 2, - 2 ], [ - 6, - 1 ], [ - 4, 0 ],
[ - 7, 1 ], [ - 1, 2 ], [ - 6, 3 ], [ - 3, 3 ],
[ - 7, 6 ], [ - 3, 6 ], [ - 5, 7 ], [ - 1, 7 ],
[ 5, - 7 ], [ 1, - 6 ], [ 6, - 5 ], [ 4, - 4 ],
[ 2, - 3 ], [ 7, - 2 ], [ 1, - 1 ], [ 4, - 1 ],
[ 2, 1 ], [ 6, 2 ], [ 0, 4 ], [ 4, 4 ],
[ 2, 5 ], [ 7, 5 ], [ 5, 6 ], [ 3, 7 ]
];
/**
* TSL function for creating a TRAA node for Temporal Reprojection Anti-Aliasing.
*
* @tsl
* @function
* @param {TextureNode} beautyNode - The texture node that represents the input of the effect.
* @param {TextureNode} depthNode - A node that represents the scene's depth.
* @param {TextureNode} velocityNode - A node that represents the scene's velocity.
* @param {Camera} camera - The camera the scene is rendered with.
* @returns {TRAANode}
*/
export const traa = ( beautyNode, depthNode, velocityNode, camera ) => nodeObject( new TRAANode( convertToTexture( beautyNode ), depthNode, velocityNode, camera ) );